This study was performed to investigate antioxidant and anti-inflammatory activities of perilla(Perilla frutescens L.) seed, flower and leaf according to extraction condition. Perilla seed extracts(PSE), perilla flower extracts(PFE), perilla leaf extracts(PLE) was extracted by stirring extraction (STE, 25°C), shaking extraction (SHE, 80°C), and sonication assisted extraction(SAE, , 25°C) with 94% ethanol, 60% ethanol and distilled water, followed by analysis of total polyphenol and flavonoid and testing radical scavenging activities. The highest total polyphenol content (5.47, 9.36, 38.58 mg gallic acid equivalent/g), total flavonoid content(5.77, 8.62, 46.44 mg catechin equivalent/g), ABTS(10.68, 19.46, 63.56 mg trolox equivalent/g) and DPPH(6.51, 7.69, 79.73 mg trolox equivalent/g) radical scavenging activity of PSE, PFE and PLE was observed in the HWE with 60% ethanol,. Among the three extraction method, SHE provided the best results for yield, polyphenol, flavonoid content of perilla seed, flower, leaf in comparison to STE or SAE. SHE with 60% ethanol of perilla seed, flower, leaf more effectively inhibited secretion of nitric oxide(NO) and pro-inflammatory cytokine in RAW 264.7 macrophage exposed to LPS compared to other extraction solvent and method. Therefore, these extracts obtained from perilla seed, flower, leaf could be used antioxidant and anti-inflammatory ingredients in the food industry.
Various disposal methods for spent nuclear fuels (SNFs) are being researched, and one of these methods involves separating high heat-generating nuclear isotopes such as Strontium-90 (90Sr) and Cesium-137 (137Cs) for deep disposal. These isotopes has relatively short half-lives and substantial decay energies. Especially, 90Sr undergoes decay through Yttrium-90 to Zirconium-90, emitting intense heat with beta radiation. Therefore, the removal of these high heat-generating isotopes will significantly contribute to reducing disposal site area. To remove 90Sr from SNFs, molten salt was utilized in KAERI. During this process, it was discovered that 90Sr dissolves in the molten salt in the form of SrCl2 and/or Sr4OCl6. Afterwards, it is crucial to recover 90Sr in the form of oxide from the salt to create immobilized forms for disposal. This can be achieved by reactive distillation with K2CO3. However, the amount of 90Sr within the SNFs is only 0.121wt%, and even if all the 90Sr in the SNFs were to leach into the molten salt, the quantity of 90Sr in the molten slat would still be very small. Therefore, adding K2CO3 to the molten salt for reactive distillation could result in significant possibilities of side reactions occurring. In this study, a two-step process was employed to mitigate the side reactions: the 1st step involves evaporating the all molten salts and the 2nd step includes adding K2CO3 to make oxides through solid-solid reaction. Eutectic LiCl-KCl, which is the most commonly used salt, was employed. The eutectic LiCl-KCl with SrCl2 was heated at 850°C for 2 h to evaporate the salts under a vacuum (> 0.02 torr). However, after examining the distillation product before the solid-solid reaction, it was observed that SrCl2 reacted with KCl in the salt, resulting in the formation of KSr2Cl5. It means that salts containing KCl are not suitable candidates for reactive distillation aimed at producing immobilized forms. As an alternative, MgCl2 could be a highly promising candidate because it is inert to SrCl2 and according to a recent study in KAERI, MgCl2 exhibited the most efficient separation of Sr among various salts. Therefore, we plan to proceed with the two-step reactive distillation using MgCl2 for the future work.
It has been investigated on the management of Strontium-90 in KAERI. It is needed to separate the solute from the salt solution for the recovery of strontium after the chlorination of the strontium oxide in molten salt. A vacuum distillation technology was used for the separation of strontium from the molten salt in our previous study. Strontium chloride was successfully carbonated by reactive distillation of SrCl2 – K2CO3 – LiCl – KCl system. In this study, it was tried to develop another route to recover strontium from the salt solution by a solid-solid reaction for avoiding the entrainment of product and the salt-K2CO3 reaction. Reactive distillation experiments were carried out for SrCl2 - K2CO3 – LiCl – KCl system. The carbonation temperature and pressure were 520°C and 0.8 bar. After the carbonation reaction, the temperature was elevated to 820°C to remove KCl from the reaction product. SrCO3 and KCl peaks were found in the XRD analysis of the residual product. It could be concluded that SrCl2 can be successfully carbonated after salt removal by the solid-solid reaction.
The objective of this study was to investigate the distribution of functional compounds in perilla leaves of various genetic resources and their antioxidant activities. A comprehensive analysis of functional compounds was conducted for 90 genetic resources, focusing on total polyphenol content (TPC), total flavonoid content (TFC), individual phenolic content (IPC), and lutein. Their antioxidant activities were then analyzed based on their radical scavenging capacity using ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and DPPH (2,2-diphenyl-1-picrylhydrazyl). The TPC content exhibited a range of 13.19 to 35.85 mg gallic acid equivalent/g, whereas the TFC content varied from 11.74 to 46.51 mg catechin equivalent/g. Total IPC was detected in a range of 6,310.98 to 40,491.82 μg/g. Lutein was detected at levels between 70.97 and 597.97 μg/g. ABTS and DPPH radical scavenging activities of perilla leaves ranged from 30.39 to 58.58 mg trolox equivalent (TE)/g and from 7.74 to 46.56 mg TE/g, respectively. Furthermore, correlation analysis demonstrated that rosmarinic acid, a phenolic acid, exhibited a significantly positive correlation with antioxidant activity. These findings suggest that various genetic resource of perilla leaves could effectively mediate antioxidant capacity. Results of this study provide valuable information for use of perilla leaves in Korea as functional food materials.
A phosphorylation (phosphate precipitation) technology of metal chlorides is considering as a proper treatment method for recovering the fission products in a spent molten salt. In KAERI’s previous precipitation tests, the powder of lithium phosphate (Li3PO4) as a precipitation agent reacted with metal chlorides in a simulated LiCl-KCl molten salt. The reaction of metal chlorides containing actinides such as uranium and rare earths with lithium phosphate in a molten salt was known as solidliquid reaction. In order to increase the precipitation reaction rate the powder of lithium phosphate dispersed by stirring thoroughly in a molten salt. As one of the recovery methods of the metal phosphates precipitated on the bottom of the molten salt vessel cutting method at the lower part of the salt ingot is considered. On the other hand, a vacuum distillation method of all the molten salt containing the metal phosphates precipitates was proposed as another recovering method. In recent study, a new method for collecting the phosphorylation reaction products into a small recovering vessel was investigated resulting in some test data by using the lithium phosphate ingot in a molten salt containing uranium and three rare earth elements (Nd, Ce, and La). The phosphorylation experiments using lithium phosphate ingots carried out to collect the metal phosphate precipitates and the test result of this new method was feasible. However, the reaction rate of test using lithium phosphate ingot is very slower than that of test using lithium phosphate powder. In this presentation, the precipitation reactor design used for phosphorylation reaction shows that the amount of molten salt transferred to the distillation unit will reduce by collecting all of the metal phosphates that will be generated using lithium phosphate powder into a small recovering vessel.
It has been investigated on the management of the nuclides in KAERI. Strontium-90 is a high heatgenerating nuclide in spent nuclear fuel. It is needed to separate the salt from the salt solution for the recovery of strontium after the chlorination of the strontium oxide in molten salt. A vacuum distillation technology was used for the separation of strontium from the molten salt. It was investigated on operating conditions of reactive distillation process for the recovery of the strontium from the salt solution. At a reduced pressure, considerable amount of the carbonation agents such as K2CO3 and Li2CO3 were reduced during heating in the distiller due to the thermal decomposition. Therefore, the two step process was proposed, which is composed of a reaction step at an atmospheric pressure and a salt distillation step at a reduced pressure. In the reaction step, the condition of low temperature and high pressure is suitable to suppress the decomposition of the carbonation agent. In the salt distillation step, reduced pressure is preferable at a suitable temperature depending on the evaporation rate of the salt.
Interfacial adhesion between carbon fiber and epoxy resin mostly determine the mechanical properties of the carbon fiber/ epoxy composites and the chemical structures of epoxy resin and hardener plays an important role. In this regard, stereoisomerism of epoxy hardeners, such as 3,3′ and 4,4′-DDS (diaminodiphenylsulfone), can have significant influence on the fracture toughness of the cured epoxy and related carbon fiber composites. Therefore, this study aims to investigate the influence of stereoisomerism of epoxy hardeners on fracture toughness of the carbon fiber/epoxy composites. Triglycidyl aminophenol (TGAP) are selected as epoxy resin and 3,3′- and 4,4′-DDS are selected as epoxy hardener. Wetting behaviors and fiber matrix adhesion of TGAP/DDS mixtures onto carbon fiber are investigated and fracture toughness (KIC) of TGAP/ DDS mixtures are also investigated. Then, the mode II fracture toughness test of the carbon fiber/TGAP/DDS composites are carried out to investigate the influence of hardener stereoisomerism on fracture toughness of the resulting composites. Wetting and fiber matrix adhesion to carbon fiber of TGAP/3,3′-DDS was better than those of TGAP/4,4’-DDS and KIC of TGAP/3,3′-DDS was also better than that of TGAP/4,4′-DDS. As a result of the synergistic effect of better wetting, fiber matrix adhesion, and fracture toughness of TGAP/3,3′-DDS, the mode II fracture toughness of the carbon fiber/ TGAP/3,3’- DDS composites was almost twice of that of the carbon fiber/ TGAP/4,4′-DDS composites. Based on the results reported in this study, stereoisomerism of the epoxy hardeners can influence the fracture toughness of the resulting composites as well as that of the resin itself. In other words, only small difference, such as the spatial arrangement of the molecular structure of epoxy hardeners can cause huge difference in the mechanical properties of the resulting composites.
최근 우리나라 기상청은 국내 지진 피해를 경감하기 위한 목적으로 지진조기경보 시스템의 도입을 추진하고 있다. 지진조기경보 시스템이란 지진 발생 시 피해를 유발하는 지진파 도착 이전에 경보를 발령하여 수신자의 대응시간을 확보하기 위한 시스템으로써, 미국, 일본, 멕시코, 터키, 대만, 루마니아 등에서는 이미 도입되어 활용 중이다. 기본적인 원리는 전자파와 지진파 간, 또는 지진파의 파형 간 속도 차이를 활용하는 것이며, 그 형태에 따라 크게 on-site, network-based, front-detection 방식 등으로 분류된다. 국가별 실정에 따라 관측 네트워크나 경보의 내용 혹은 전달방식 등에 차이가 있는데, 본 연구에서는 이러한 특징들에 주목하여 해외 연구 현황 및 도입 사례를 종합하였다.