The production of macroalgae-derived adsorbent is of great importance to realize the idea of treating pollutants with invaluable renewable materials. Herein, a novel meso-micro porous nano-activated carbon was prepared from green alga Ulava lactuca in a facile way via chemical activation with zinc chloride. The resultant activated carbon possesses a significant specific surface area 1486.3 m2/ g. The resulting activated carbon was characterized and investigated for the adsorption of Direct Red 23 (DR23) dye from an aqueous environment. Batch method was conducted to study the effects of different adsorption processes on the DR23 dye adsorption from water. Isotherms and kinetics models were investigated for the adsorption process of DR23 dye. It was found that the adsorption data were well fitted by Langmuir model showing a monolayer adsorption capacity 149.26 mg/g. Kinetic experiments revealed that the adsorptions of DR23 dye can be described with pseudo-secondorder model showing a good correlation (R2 > 0.997). The prepared activated carbon from Ulava lactuca was exposed to a total of six regeneration experiments. The regeneration result proved that the fabricated activated carbon only loses 19% of its adsorption capacity after six cycles. These results clearly demonstrated the high ability of the obtained active carbon to absorb anionic dyes from the aqueous environment.
Many insects are able to feed on crucifers despite the presence of a potent activated defense system known as the mustard oil bomb. In damaged tissue, mustard oil glucosides (glucosinolates) are hydrolyzed by the enzyme myrosinase to form toxic mustard oils (isothiocyanates). Here, we analyzed how the the cabbage stem flea beetle Psylliodes chrysocephala, a key pest of oilseed rape, copes with this chemical defense. First, we found that P. chrysocephala prevents the activation of ingested glucosinolates by two different strategies, a) by sequestering glucosinolates and b) by converting glucosinolates to desulfo-glucosinolates. Our next aim was to identify the sulfatase enzyme(s) responsible for the detoxification of glucosinolates in P. chrysocephala. Nine arylsulfatase-like genes were identified in the transcriptome of P. chrysocephala, and five of them showed glucosinolate sulfatase activity upon heterologous expression in Sf9 cells. By using RNAi, we confirmed that PcGSS1 and PcGSS2 are active towards benzenic and indolic glucosinolates in P. chrysocephala adults in vivo. However, in feeding experiments, the proportion of sequestered and desulfated glucosinolates ranged from 26 to 35% which suggests that these strategies alone are likely not sufficient to overcome the chemical plant defense. Indeed, P. chrysocephala additionally conjugates isothiocyanates to glutathione and metabolizes them via the conserved mercapturic acid pathway. In summary, the cabbage stem flea beetle avoids isothiocyanate formation by specialized strategies (sequestration and desulfation), but also relies on a conserved detoxification pathway to prevent toxicity of isothiocyanates.
The graphene oxides (GOs) were tested as a fluorescent quencher in the field of DNA-diagnostics. The various suspensions of GO nanoplates were prepared by changing the synthesis conditions. The suspensions were stable for at least 6 weeks by differing degrees of functionalization of various oxygen-containing groups of atoms. Depending on the properties of GO nanoplates, their fluorescent quenching abilities, which were determined by the amount of the tagged immobilized oligonucleotide, were also changed. GO suspension synthesized at 75 oC of reaction mixture showed the fluorescent quenching of 16.39 nmol/mg, which would be a potential substitution of molecular fluorescent quencher in test-systems for DNAdiagnostics.
Polarbear is a ground-based experiment located in the Atacama desert of northern Chile. The experiment is designed to measure the Cosmic Microwave Background B-mode polarization at several arcminute resolution. The CMB B-mode polarization on degree angular scales is a unique signature of primordial gravitational waves from cosmic in ation and B-mode signal on sub-degree scales is induced by the gravitational lensing from large-scale structure. Science observations began in early 2012 with an array of 1,274 polarization sensitive antenna-couple Transition Edge Sensor (TES) bolometers at 150 GHz. We published the first CMB-only measurement of the B-mode polarization on sub-degree scales induced by gravitational lensing in December 2013 followed by the first measurement of the B-mode power spectrum on those scales in March 2014. In this proceedings, we review the physics of CMB B-modes and then describe the Polarbear experiment, observations, and recent results.
The highabundance and impact on honeybees of the Asian hornet Vespa velutina var. nigrithorax have caused great concern among European public authorities and beekeepers. The species was reported for the first time in France in 2005 and spread out across 66 European districts (ca. 360 000 km 2 ) within 7 years (INPN, 2012; Rome et al., 2013). Its arrival was reported in 2010 in Northern Spain, in 2011 in Portugal and Belgium and in 2013 in Italy. Its wider expansion in Europe is soon to be expected.
We discuss here the advances of the collaborative research project initiated in 2008 in France.
1. The potential invasion risk of the species was assessed using modeling tools of climatic suitability (Villemant et al., 2011, Barbet-Massin et al., 2013). Interestingly, the potential distribution of V. v. nigrithorax matches the current distribution of another invasive social wasp, the German yellow jacket, Vespula germanica (Beggs et al., 2011).
2. Apartfrom reported damages on hives, little is known on the biology of V. velutina throughout its native Asian range. In the invaded range, the impact of V. v. nigrithorax on the diversity and biomass of the invertebrate fauna is under study. Preliminary results reported a diversified diet varying among seasons and habitat types.
3. The genetic variability between individuals of V. v. nigrithorax from France and Asia was assessed in order to describe the history of its invasion. The analysis has evidenced a low variability among the invasive population, which indicates a single introduction of one or more queens. The sampling of specimens in France and in the area of origin has been extended to confirm this hypothesis and the most probable area of origin (Arca, 2012).
Given the potential economic and biological impact of V. v. nigrithorax, a better understanding of its invasion dynamics is necessary to predict regions at risk, hence to help with planning dedicated control measures, a prerequisite for replacing the reactive nature of current solutions with a proactive, predictive approach.
We constructed an unbiased asteroid catalog from the mid-infrared part of the All-Sky Survey with the Infrared Camera (IRC) on board AKARI. About 20% of the point source events recorded in the IRC All-Sky Survey observations were not used for the IRC Point Source Catalog in its production process because of a lack of multiple detection by position. Asteroids, which are moving objects on the celestial sphere, are included in these "residual events" We identified asteroids out of the residual events by matching them with the positions of known asteroids. For the identified asteroids, we calculated the size and albedo based on the Standard Thermal Model. Finally we had a new brand of asteroid catalog, which contains 5,120 objects, about twice as many as the IRAS asteroid catalog.
Raw materials from different sources, produced by a given process and having equal chemical composition, are supposed to be equivalent. The differences in sintering behavior have been investigated on P/M steels obtained from four diffusion-bonded powders (Fe + Ni + Cu + Mo) on atomized iron base, at the same alloy contents. Two levels of carbon and two sintering conditions have been investigated. Dimensional changes, C content, hardness, microhardness pattern, universal hardness, fractal analysis, pore features, microstructure features, and rupture strength have been compared to characterize different raw materials. The results show that the claimed equivalence is not confirmed by experimental data.
The deformation under radial pressure of rectangular dies for metal powder compaction has been investigated by FEM. The explored variables have been: aspect ratio of die profile, ratio between diagonal of the profile and die height, insert and ring thickness, radius at die corners, interference, different insert materials, i. e. conventional HSS, HSS from powders, cemented carbide (10% Co). The analyses have ascertained the unwanted appearance of tensile normal stress on brittle materials, also "at rest", and even some dramatic changes of stress patterns as the die height increases with respect to the rectangular profile dimensions. Different materials behave differently, mainly due to difference of thermal expansion coefficients. Profile changes occur when the dies are heated up to the temperature required for warm compaction. The deformation patterns depend on compaction temperature and thermal expansion coefficients.
Construction of the Virtual Observatory (VO) is a great concern to the astronomical community in the 21st century. We present an outline of the concept and necessity of the va and the current status of various VO projects including the 15 national ones and the International Virtual Observatory Alliance (IVOA). We summarize the possible science cases that could be solved by using the VO data/tools, real science cases which are the results of using current VO tools, and our own work of using AstroGrid, the United Kingdom national VO, for a research on star formation history of galaxies.