In NPP (nuclear power plant), boric acid is used as a neutron absorbent. So radioactive boric acid waste are generated from various waste streams such as discharge or leakage of reactor coolant water, floor drains, drainage of equipment for operation or maintenance, reactor letdown flows and etc. Depending on KHNP, 20,015 drum (200 L drum) of concentrated boric acid waste were stored in KOREA NPP until 2019. In previous study, our group suggested the waste upcycling process synthesizing B4C neutron absorber using boric acid waste and activated carbon waste to innovatively reduce radioactive wastes. Radioactive activated carbon waste was utilized in off gas treatment system of NPP to capture nuclide such as I-131, C-14 and H-3. Activated carbon waste is treated as low-level radioactive waste and pre-treatment system for removing nuclide from the activated carbon waste is needed to use B4C up-cycling process. In this study, microwave treatment system is suggested to treat the activated carbon waste. Activated carbon waste was exposed to microwave for a few minutes and temperature of the waste was dramatically increased over 400°C. Nuclide in the activated carbon waste were selectively removed from the waste without massive production of secondary off gas waste.
The primary objective of this study is to evaluate a systematic design’s effectivity in remediating actual uranium-contaminated soil. The emphasis was placed on practical and engineering aspects, particularly in assessing the capabilities of a zero liquid discharge system in treating wastewater derived from soil washing. The research method involved a purification procedure for both the uranium-contaminated soil and its accompanying wastewater. Notably, the experimental outcomes demonstrated successful uranium separation from the contaminated soil. The treated soil could be self-disposed of, as its uranium concentration fell below 1.0 Bq·g−1, a level endorsed by the International Atomic Energy Agency for radionuclide clearance. The zero liquid discharge system’s significance lay in its distillation process, which not only facilitated the reuse of water from the separated filtrate but also allowed for the self-disposal of high-purity Na2SO4 within the residues of the distilled filtrate. Through a comparative economic analysis involving direct disposal and the application of a remediation process for uranium-contaminated soil, the comprehensive zero liquid discharge system emerged as a practical and viable choice. The successful demonstration of the design and practicality of the proposed zero liquid discharge system for treating wastewater originating from real uranium-contaminated soil is poised to have a lasting impact.
부추속은 수선화과에 속하며 약 1000여종에 이른다. 좀부 추는 자생 부추속에 속하며 식용이 가능하고 크기가 작아 분 화식물로 적합하다. 이에 따라 본 연구는 좀부추를 분화 소재 로서 개발하기 위하여 식물의 측지성장을 촉진하고 꽃의 품질 을 향상시키기 위해 수행되었다. 이를 위하여 좀부추의 구근 을 생장조절제(GA3, BA, 에테폰, TDZ)에 다른 시간(1, 5시 간)동안 침지처리했을 때 식물의 생장과 꽃에 어떤 영향을 주 는지 조사하였다. GA3 처리구는 엽수와 자구의 수가 증가해 증식을 촉진시키는 효과가 있었다. 게다가 GA3는 화수의 증 가와 조기개화를 유도했다. 그러나 엽폭과 화경의 폭은 감소 하였다. 에테폰은 좀부추의 초장과 초폭에서 영향을 주지 않 았으나 1h에서 자구의 수가 증가하였다. 에테폰은 화서 발생 을 억제하여 화경의 수가 감소하였다. BA는 식물의 생장과 개 화 특성에 유의적인 영향을 보이지 않았다. TDZ처리한 식물 은 왜화되고 생육상태가 불량하였으며, 식물을 고사시켰다.
Subunit vaccines are being developed as a potential therapy for preventing microbial pathogen infection. In this study, the immunogenicity of recombinant Brucella (B.) abortus Fe/Mn superoxide dismutase (rFe/Mn SOD) protein as a subunit vaccine against B. abortus was investigated in BALB/c mice model. Brucella Fe/Mn SOD gene was cloned into a pcold-TF DNA vector. The bacterial recombinant protein was expressed using the Escherichia coli DH5α strain with a size of 82.50 kDa. The western blotting assay showed that rFe/Mn SOD reacted with Brucella-positive serum, indicating the potential immunoreactivity of this recombinant protein. After the second and third vaccinations, the peripheral CD4+ T cell population was increased significantly in the rFe/Mn SOD-immunized mice group compared to the PBS control group. Moreover, immunization of this recombinant protein increased the CD4+ T cell population from the first vaccination to the third vaccination. Meanwhile, the CD8+ T cells were slightly enhanced after the second vaccination compared to the first vaccination and compared to control groups. Fourteen days after the bacterial infection, the splenomegaly and the number of bacteria in the spleen were evaluated. The result showed that both rFe/Mn SOD and positive control RB51 decreased the bacterial replication in the spleen and the splenomegaly compared to control groups. Altogether, these results suggested that rFe/Mn SOD could induce host immunity against B. abortus infection.
In NPP (nuclear power plant), boric acid is used as a neutron absorbent. So radioactive boric acid waste are generated from various waste streams such as discharge or leakage of reactor coolant water, floor drains, drainage of equipment for operation or maintenance, reactor letdown flows and etc. Depending on KHNP, 20,015 drum (200 L drum) of concentrated boric acid waste were stored in KOREA NPP until 2019. In previous study, our group suggested the waste up-cycling process synthesizing B4C neutron absorber using boric acid waste and activated carbon waste to innovatively reduce radioactive wastes. Radioactive activated carbon waste was utilized in off gas treatment system of NPP to capture nuclide such as I-131, C-14 and H-3. Activated carbon waste is treated as low-level radioactive waste and pre-treatment system for removing nuclide from the activated carbon waste is needed to use B4C up-cycling process. In this study, microwave treatment system is suggested to treat the activated carbon waste. Activated carbon waste was exposed to microwave for a few minutes and temperature of the waste was dramatically increased over 400°C. Nuclide in the activated carbon waste were selectively removed from the waste without massive production of secondary off gas waste.
In operating or permanently shut down nuclear power plants which were built between 1970s and 1990s, asbestos was widely used for ceiling materials, wall materials, and gaskets. Furthermore, it was mainly treated as a heat-resistant material like insulation. In Kori Unit 1, radioactive asbestos was replaced or removed through maintenance and repair in the containment building during the operation period of about 40 years, but radioactive asbestos still remains that need to be partially dismantled. Generally, it is more difficult to handle because it belongs to two different waste categories, radioactive waste and hazardous waste. In addition, the risk increases further due to radioactivity with the asbestos hazards itself. Therefore, it is very important to accurately determine the amount of radioactive asbestos waste and to evaluate the treatment method and disposal reduction rate before the decommissioning is started. According to the Korean Waste Management Act, three methods are recommended for the asbestos (hazardous waste) treatment: landfill, solidification, and high-temperature melting. Landfill is commonly used in Korea and the United States while high-temperature melting and solidification are additionally recommended only in Korea. Considering the situation in Korea, landfill is not appropriate due to the limitations of landfill capacity and potential risks (hazards still remain). Therefore, the other two methods can be considered sufficiently in terms of safety, detoxification, and reduction rate. This paper evaluates the amount of radioactive asbestos waste at Kori Unit 1 based on the actual asbestos building material data (as of February 2022) of the Asbestos Management Comprehensive Information Network. Vitrification is considered as a sufficient alternative for treating radioactive asbestos waste. And, it is checked whether the vitrified waste through the high-temperature melting method, plasma torch, meets the requirements such as detoxification, compressive strength and leachability for storage and disposal stability. It is expected to be useful to prepare a radioactive mixed waste management standard and to reduce the disposal cost through the reduction of final waste.
Protected agriculture has great potential for the vegetable industry in the Philippines as it allows the application of modern cultivation techniques to mitigate adverse weather conditions and enable farmers to manage pests and diseases efficiently. Thus, to address the increasing demand for food in the Philippines, one strategy to increase vegetable production which is tested and/or proven is through the intensified use of protective structures. This review describes the magnitude and potential of agriculture in the Philippines, focusing on the protected cultivation of horticultural crops. The Philippines is far behind in greenhouse technologies compared to other Asian countries where thousands to millions of hectares are used for protected vegetable cultivation. Several studies have investigated the economic viability and applicability of low- and high-cost protective structures in typhoon-prone countries such as the Philippines, demonstrating that protective structures are feasible and profitable. Also, the impact of protected cultivation as compared to the open field has resulted in significantly higher yield and better quality of produce. Hence, the Philippine government with the assistance of the Republic of Korea agreed to improve the country’s flagging vegetable industry and endeavor to attain the status of a food-secure country through the establishment of smart greenhouse technologies. Overall, despite the limitations due to the high cost of electricity and construction protected cultivation facilities including required technologies provide greater advantages for seasonal and off-seasonal vegetable crop production compared to that in the open field. Moreover, such technology can be applied to various geographical locations such as plains, hills, deserts, rural, and urban areas.
Lysophosphatidic acid (LPA) is a bioactive lipid messenger involved in the pathogenesis of chronic inflammation and various diseases. Recent studies have shown an association between periodontitis and neuroinflammatory diseases such as Alzheimer’s disease, stroke, and multiple sclerosis. However, the mechanistic relationship between periodontitis and neuroinflammatory diseases remains unclear. The current study found that lysophosphatidic acid receptors 1 (LPAR1) and 6 (LPAR6) exhibited increased expression in primary microglia and astrocytes. The primary astrocytes were then treated using medium conditioned to mimic periodontitis through addition of Porphyromonas gingivalis lipopolysaccharides, and an increased nitric oxide (NO) production was observed. Application of conditioned medium from human periodontal ligament stem cells with or without LPAR1 knockdown showed a decrease in the production of NO and expression of inducible nitric oxide synthase and interleukin 1 beta. These findings may contribute to our understanding of the mechanistic link between periodontitis and neuroinflammatory diseases.
This study aims to investigate the effects of exogenous succinic acid (SCA) on Brucella (B.) abortus infection in macrophage RAW 264.7 cells and ICR mice. Firstly, the in vitro experiment was conducted by MTT cytotoxicity and bacterial internalization assay to evaluate the uptake of B. abortus into macrophage cells. Two non-cytotoxic concentrations of SCA demonstrated attenuated invasion of Brucella into macrophages at 30 and 45 min post- infection (pi). Secondly, ICR mice were treated with SCA and infected with B. abortus. On day-14 pi, spleen and blood serum were collected to evaluate the bacterial burden and total spleen weight as well as the production of cytokine/chemokine, respectively. The results showed that SCA treatment promoted bacterial growth and reduced the total spleen weight in mice. Furthermore, SCA treatment increased the level of IL-10 cytokine in the sera, while dampening the production of MCP-1 chemokine compared to the control. The results of bacterial load in spleen and spleen weight together with cytokine/chemokine production profile in the sera indicated that SCA induced the host anti-inflammatory response which is beneficial for the survival of Brucella. Therefore, these findings suggest that SCA contributed to host immunity against Brucella infection and the emerging potential topic-immunometabolism should be invested for further investigations.
In this study, the sales status of female ball-jointed dolls and their parts were investigated and analyzed. Baseline data from 194 products and 54 brands on domestic and international Internet sites was gathered for the manufacture of ball-jointed dolls and the development of prototype costumes for them. The results are as follows. First, the sizes used for ball-jointed dolls are SD, USD, MSD, 13SD, and 70SD together with height. This study analyzed 39 sizes (15~70cm) by classifying them into numbered groups: 1 (15~22cm), 2 (23~33cm), 3 (35~51cm), 4 (53~62cm), and 5 (63~70cm). The price varied depending on the size; for example, 50cm dolls were approximately 45,000 won, while limited editions were sold at high prices, regardless of their size. They were classified into designs according to their body proportions and facial features as follows: 7- or 8-head-figure, 5-head figure, and 3-head figure, and were presented proportionally as images of women, adolescents, and infants. Second, the head was incised so that the top could be removed horizontally or the facial region vertically, allowing attachment of the eyeballs (which were either glass, resin, or acrylic) to the inside. More than 30 different colors were sold. Various wig styles were provided, including cut, short hair, and perm. These were made from human hair, heat-resistant fiber, and artificial hair. For the hands, there was a design expressing human hand gestures. For the feet, heels were in the form of wearing either high-heels or flat soles.