검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 18

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The study aims to establish a comprehensive life cycle assessment model for bridges in South Korea considering domestic carbon emission factors. The main aims are to evaluate the carbon emission of bridge construction, focusing on the Seong-ri Bridge as a case study, and to improve national environmental policies and management strategies. METHODS : We utilized the life cycle assessment (LCA) methodology, adhering to standards set by ISO, to categorize each phase of the bridge's life cycle. The process involved selecting the bridge type based on the compilation of a detailed analysis range. The analysis covered various stages from raw material supply (A1-A3) to construction (A4-A5) and maintenance (B2-B5), excluding certain stages due to data unavailability. Carbon emission factors were then applied to quantify emissions at each stage. RESULTS : The findings indicate that the raw material production phase (A1-A3) contributes to approximately 96% of the total carbon emissions, highlighting its significant impact. We report detailed calculations of emissions using domestically developed emission factors for materials such as steel and concrete and establish a carbon emission per unit length measure for comparative analysis with other infrastructure. CONCLUSIONS : We leveraged LCA ISO standards to analyze each stage of the Seong-ri bridge, calculating its carbon emissions based on domestic factors for CO2, CH4, and N2O. By tailoring the study to Korea-specific emission factors, we develop a greenhouse gas model closely aligned with the nation’s environmental conditions. The results contribute to improving environmental impact assessments and strategically aiding national policy and management decisions.
        4,000원
        4.
        2018.05 구독 인증기관·개인회원 무료
        Roller Compacted Concrete Pavement (RCCP) is placed by roller compaction of a mixture of less cement and unit water content and more aggregates and provides excellent early strength development with the help of interlocking of aggregates and hydration. The unit cement content of RCC pavements accounts for 85% of conventional pavements, with low drying shrinkage. As low drying shrinkage leads to smaller crack widths than ordinary concrete, RCC pavements can help elevate reflecting crack resistance if applied to a base layer of a composite pavement system. In a composite pavement with an asphalt surface laid over a concrete base, pavement temperature change is important in predicting pavement performance. As movement of the lower concrete layer is determined by temperature depending on pavement depth, temperature data of the pavement structure serves as an important parameter to prevent and control reflecting crack. Among the causes of reflecting crack, horizontal behavior of the lower concrete layer and curling-caused vertical behavior of joints/cracks are considered closely related to temperature change characteristics of the lower concrete course (Baek, 2010). Previous studies at home and abroad about reflecting crack have focused on pavement behavior depending on daily and yearly in-service temperature changes of a composite pavement (Manuel, 2005). Until now, however, studies have not been conducted on initial temperature characteristics of concrete in composite pavements where asphalt surface is placed over an RCC base. Annual temperature changes of in-service concrete pavements go up to 60 ℃, and those of asphalt overlays become around the twice at 110 ℃. This study evaluated initial crack behavior of composite pavement by investigating pavement temperature by depth of an RCC base and analyzing joint movement depending on change to temperatures of continuously jointed pavements. Findings from the study suggest that in composite pavements and asphalt overlays, time of laying asphalt has an important impact on crack behavior and reflecting crack.
        5.
        2016.06 구독 인증기관·개인회원 무료
        Roller-compacted concrete or RCC is a dry concrete that requires compaction in order to reach its final form. Its consistency is usually overlooked due to its inconsistency and lack of subjective nature. To work with this concrete, however, appropriate consistency is required for supporting the compacting machine and minimizing compaction energy. Due to transportation and compaction time, maintaining proper consistency within a period of time is also necessary. Vebe time, a represent parameter of dry concrete consistency, ranged from 30 to 75 seconds is considered appropriate for RCC in pavement application. The purpose of this study is to improve workability of this concrete which consisted of improving its consistency and maintaining it within the working time. It was confirmed that the workable time of a normal RCC is less than one hour. Moreover, it was found that Vebe time drops when water content increases and goes up when sand by aggregate ratio increases. Various admixtures were also employed in this study in order to improve the workability of this concrete. Poly Naphtalene Sulfonate superplasticizer, particularly, was found to be the most effective in term of lowering down Vebe time and maintaining it. With just 0.3% of this admixture, the working time of RCC can be extended up to four hours without affecting its compressive strength.
        6.
        2015.10 구독 인증기관·개인회원 무료
        More Roller-compacted concrete (RCC) is a dry concrete consisted of same materials as conventional concrete with different proportioning which requires compaction effort in order to reach its final form. Thus, both hydration and aggregate interlock play important roles in its strength augmentation. Flexural strength, an important factor in pavement design and fatigue cracking resistance, can be difficult to be obtained at in-situ and may be subjected to high variability. Even though its compressive strength is relatively high compared to conventional concrete with similar binder content, the relationship between compressive strength and flexural or tensile strength were not well defined. The goal of this research is to compare the relationship between compressive strength and flexural strength as well as the relationship between compressive strength and splitting tensile strength of RCC with those of conventional concrete using various equations suggested in other researches and also to determine new regression equations for estimating RCC’s flexural and splitting tensile strength. The positive result of RCC’s flexural strength was found; it was higher than majority of predicted values from conventional concrete for the same compressive strength. In contrast, RCC’s splitting tensile strength was relatively low compared to that of conventional concrete for the same compressive strength. Power equations were learned to be suitable for relationship between compressive and flexural strengths as well as relationship between compressive and splitting tensile strengths.
        7.
        2015.03 구독 인증기관·개인회원 무료
        More than sixty percent of highways in Korea were constructed with concrete pavement to carry the heavy traffic loads due to the economic development of this country. The service life of some pavements are close to the end, therefore, they requires the maintenances, rehabilitations and reconstructions to improve their structural performances.According to the similarity of material properties to the concrete pavement, bonded concrete overlay isa good rehabilitation technique used steadily in Korea. However, it is recently reported that the bonded concrete overlays in some highways expose the early distresses and it is assumed that the poor bonding is a cause of this problem. Additionally, the poor bonding of bonded concrete overlay is caused by the bond strength that is less than the bond strength criterion. The pre-investigation of various concrete overlays is conducted in laboratory to determine the possible influence factors reducing the bond strength and it indicates that there are two possible factors affecting the bond strength: the concrete overlay types and the substrate conditions. The study investigates the vulnerable factor between the two factors based on theevaluation of the in-situ bond strength data of bonded concrete overlay gathered from some highways in Korea. The bond strength data is collected from two different application areas: the new constructionand the rehabilitation projects. The new construction and the rehabilitation projects used Latex-modified Concrete (LMC) and Ultra-rapid Hardening Latex-modified concrete (URH-LMC), respectively as the concrete overlay. The evaluation of in-situ bond strength is to determine the percentage of unacceptable bond strength in each projectto study the effect of different types of concrete overlay. Moreover, the percentage of bonding failure modes having the bond strengths less than the criterion is also measured to study the effect of substrate condition.As a result, substrate condition is the vulnerable factor affecting the poor bonding and causing the early distresses in bonded concrete overlay.