Pleurotus eryngii is one of the most commercially important mushrooms cultivated in Korea. However, the shelf-life of the fruiting body is short, limiting its export. A new hybrid strain H17 of P. eryngii was developed to extend the shelf-life by mono-mono crossing between monokaryotic strains derived from DanBi and KNR2774. Although the cultivation period of H17 was slightly longer than that of the reference cultivar Kenneutari No.2, the quality did not change and remained normal after a period of 65.0 days at 4°C. This result was significantly different from that of the reference cultivar Kenneutari No.2. Analysis of the genetic characteristics of the new hybrid strain H17 revealed a different profile from that of the parental and reference cultivars when random amplification of polymorphic DNA (RAPD) primers was used. These results demonstrate that H17 is a new cultivar with improved storability after harvesting.
The development of nanostructured functional materials derived from biomass and/or waste is of growing importance for creating sustainable energy-storage systems. In this study, nanoporous carbonaceous materials containing numerous heteroatoms were fabricated from waste coffee grounds using a top-down process via simple heating with KOH. The nanoporous carbon nanosheets exhibited notable material properties such as high specific surface area (1960.1 m2 g–1), numerous redox-active heteroatoms (16.1 at% oxygen, 2.7 at% nitrogen, and 1.6 at% sulfur), and high aspect ratios (>100). These unique properties led to good electrochemical performance as supercapacitor electrodes. A specific capacitance of ~438.5 F g–1 was achieved at a scan rate of 2 mV s–1, and a capacitance of 176 F g–1 was maintained at a fast scan rate of 100 mV s–1. Furthermore, cyclic stability was achieved for over 2000 cycles.
Apolipophorin-Ⅲ (apoLp-Ⅲ) is a hemolymph protein whose function is to facilitate lipid transport in an aqueous medium in insect. Recently, apolipophorin-Ⅲ in Galleria mellonella and Hyphantria cunea was shown to play an unexpected role in insect immune activation. We show here a novel possible function/role of apoLp-Ⅲ in insects. To investigate the genes which have a relationship with apoLp-Ⅲ in fall webworm larvae, we reduction of endogenous Hc apoLp-Ⅲ mRNA levels in larvae via RNA interference (RNAi). The RNAi-mediated Hc apoLp-Ⅲ reduction resulted in the reduction of antioxidants, like MnSOD, catalase, and glutathione S transferase as well as immune proteins. In particular, expression of MnSOD commonly decreased in fat body, midgut, and hemocytes following the knockdown of Hc apoLp-Ⅲ, which induced an elevated level of superoxide anion in H. cunea larvae. The observed effect of Hc apoLp-Ⅲ RNAi suggests that Hc apoLp-Ⅲ is related to the action/expression of antioxidants.
Innate immunity responses are triggered by the immune challenge and therefore involve signaling processes. The cellular response is initiated by hemocytes and mainly involves phagocytosis and encapsulation of intruders by these cells. To address whether Hc-STAT is activated upon bacterial challenge, we examined the subcellular location of STAT protein in hemocyte by immunostaining. A new insect member of the STAT family of transcription factors (Hc-STAT) has been cloned from the lepidopteran, Hyphantria cunea. The domain involved in DNA interaction and the SH2 domain are well conserved. The gene is transcribed at a low level during all stages of development, and the protein is present in hemocytes, fat body, midgut, epidermis, and Malphigian tuble (Mt). Especially, hemocytes and Mt showed transcriptional activation of Hc-STAT upon Gram (-) bacteria and fungal challenge. Gram (-) bacteria and fungal challenge specifically results in nuclear translocation of Hc-STAT protein and induction of DNA-binding activity that recognizes a STAT target site in H. cunea hemocyte. In vitro treatment with pervanadate translocates Hc-STAT to the nucleus in hemocyte cells. Here we report the first evidence for the involvement hemocyte JAK/STAT pathway upon microbial infection in lepidopteran insect.
Innate immunity responses are triggered by the immune challenge and therefore involve signaling processes. The cellular response is initiated by hemocytes and mainly involves phagocytosis and encapsulation of intruders by these cells. To address whether Hc-STAT is activated upon bacterial challenge, we examined the subcellular location of STAT protein in hemocyte by immunostaining. A new insect member of the STAT family of transcription factors (Hc-STAT) has been cloned from the lepidopteran, Hyphantria cunea. The domain involved in DNA interaction and the SH2 domain are well conserved. The gene is transcribed at a low level during all stages of development, and the protein is present in hemocytes, fat body, midgut, epidermis, and Malphigian tuble (Mt). Especially, hemocytes and Mt showed transcriptional activation of Hc-STAT upon Gram (-) bacteria and fungal challenge. Gram (-) bacteria and fungal challenge specifically results in nuclear translocation of Hc-STAT protein and induction of DNA-binding activity that recognizes a STAT target site in H. cunea hemocyte. In vitro treatment with pervanadate translocates Hc-STAT to the nucleus in hemocyte cells. Here we report the first evidence for the involvement hemocyte JAK/STAT pathway upon microbial infection in lepidopteran insect.
A new soybean cultivar for tofu and soy-paste, "Daemang 2", was developed from the cross between 'Shinpaldal 2' and'Seokryang' by soybean breeding team in the Yeongnam Agricultural Research Institute (YARI) in 2005. A promising line,SS93205-2B-8-3-2-1-1-1