검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bee pollen is a valuable apitherapeutic product and has been known to have diverse biological activities, including antimicrobial, anti-inflammatory, and even anticancer activity. However, its effect on the immune system is not well studied and is rather controversial. This study intended to elucidate the biological activity of bee pollen on immunity. For this purpose, we used lyophilized bee pollen after wet grinding, which shows increased extraction of bioactive components and enhanced biological activity. First, lyophilized bee pollen after wet grinding significantly increased the proliferation of splenocytes isolated from normal mice. On the other hand, lyophilized bee pollen after wet grinding dose-dependently reversed splenocyte proliferation by concanavalin A or lipopolysaccharide. To clarify the activity of bee pollen on immunity lyophilized bee pollen after wet grinding was administered daily to mice for five weeks and isolated splenocytes. In this study, there was no significant difference in the population of immune cells and the size of spleen between bee pollen- and sterile water-treated groups. However, proliferation of splenocyte isolated from bee pollen-administered animals was boosted by both concanavalin A and lipopolysaccharide. Finally, kaempferol, a well-known flavonoid from bee pollen, dose-dependently increased splenocyte proliferation by both Con A and LPS. On the other hand, naringenin, another flavonoid in the bee pollen, dose-dependently inhibited the proliferation of splenocytes by Con A and LPS. Together, these data indicate that bee pollen may be able to prime the immunity to boost immune reaction after inflammation.
        4,000원
        2.
        2017.05 서비스 종료(열람 제한)
        Background : Panax ginseng C.A. Meyer is a perennial herb belongs to the family Araliaceae. Wild-cultivated ginseng (WCG) is a specific type of ginseng in Korea which cultivated on artificial forest cultivation method. To obtain a WCG which is similar to wild ginseng (WG), this method usually performed in a mountain using seeds or seedlings of cultivated ginseng (CG) and WG. WCG is very expensive because it is difficult to cultivate. However, systematic cultivation method have not yet been developed compared to high added value. Furthermore, very high price of WCG caused the problem that Panax notoginseng or Panax quinquefolium are sold as WCG in Korean market. In this study, we analyzed the genetic diversity of WCG collected from five areas in Korea using SSR markers. Methods and Results : WCG samples were collected from five areas in Korea (Bucheon, Cheongju, Hoengseong, Judeok and Ulsan). DNA extraction was performed using CTAB method. SSR markers were collected from the published papers. After test PCR using the markers, one of the primer pair was labeled with fluorescence dye (FAM, NED, PET, or VIC) and GeneScan analysis were performed. DNA amplification was conducted using T-100 Thermal Cycler (Bio-Rad). PCR products were separated by capillary electrophoresis on the ABI 3730 DNA analyzer (Applied Biosystems). Conclusion : Eight SSR markers were collected from the published literature and used for the analysis. From the 8 tested SSR markers, 7 SSR markers showed polymorphism between varieties. GenScan analysis were performed using the selected SSR markers to analyze the phylogenetic relationship of WCG. From the results, WCG cultivated in Korea showed that they have a very diverse genetic background.
        3.
        2017.05 서비스 종료(열람 제한)
        Background : Wild-cultivated ginseng (WCG) prices are very different according to root ages. Generally, two methods are used to discriminate the root ages of Panax ginseng C.A. Meyer. The first method is the yearly determination method by the ring dyeing method, and the second method is the confirmation the number of stem vestiges in the rhizome. In this study, we analyzed the agronomic and growth characteristics of the WCG cultivated in Korea. In this study, to determine the appropriate root ages discrimination method for the determination of the root ages of WCG, the root ages of WCG and cultivated ginseng was examined. Methods and Results : We examined the cultivated ginseng (CG) and WCG that was collected and sold by regional groups at the Korean market. WCG does not form annual rings, which are clear and regular in wild ginseng. Therefore, it is impossible to identify the age of WCG by using the annual growth rings staining method. However, the age can be estimated by determining the number of stem vestiges in the rhizome. Conclusion : From the results of the Study on identification of root age for quality evealuation in WCG in Korea. Appropriate root ages discrimination method of WCG was confirmation the number of stem vestiges in the rhizome.
        4.
        2017.05 서비스 종료(열람 제한)
        Background : Panax ginseng C.A. Meyer is a representative medicinal plants and it has been used in traditional medicine because the plant have many effective component such as saponins. To obtain a wild-cultivated ginseng (WCG) which is similar to wild ginseng (WG), this method usually performed in a mountain using seeds or seedlings of cultivated ginseng (CG) and WG. WCG is very expensive because it is difficult to cultivate. However, systematic cultivation method have not been developed compared to their high added value. Furthermore, very high price of WCG caused the problem that Panax notoginseng or Panax quinquefolium are sold as WCG in Korean market. This is concerned as a serious problem to consumers. In this study, we analyzed the agronomic and growth characteristics of the WCG cultivated in Korea. Methods and Results : We examined the WCG that was collected and sold by regional groups at the Korean market. The root age, growth conditions, and quality level of the cultivated WCG were confirmed. WCG samples were collected from five areas in Korea (Bucheon, Cheongju, Hoengseong, Judeok and Ulsan). The main root diameter, root shape index, rhizome length, and root weight showed high level of variation and they did not form annual rings. Conclusion : Agronomic and growth characteristics of WCG showed high variations according to cultivating regions.
        5.
        2017.04 KCI 등재 서비스 종료(열람 제한)
        Rice is the staple food of at least half of the world's population. Due to global warming, the weather is difficult to forecast nowadays. Therefore, it is necessary to breed various breeding to respond to such changes in the environment. This study was conducted to analyze the QTL about plant form, culm length, ear number and ear length by using 120 lines by anther culture, a cross between the Indica variety Cheongcheong and Japonica variety Nagdong. DNA marker was selected on the QTLs gene, and the following results were obtained. CNDH (Cheongcheong Nagdong Doubled Haploid) lines frequency distribution table curves about culm length, ear number and ear length exhibited showed a continuous variation close to a normal distribution. QTL analysis result, on culm length qPlL1-1 and qPlL1-2 were detected on the chromosome 1 and qPlL5 was detected on the chromosome 5. However, on ear length qPL2, qPL3 and qPL10, were detected on the chromosome 2, 3 and 10, while on ear number qPN1-1 and qPN1-2 were detected on the chromosome 1, qPN9 was detected on the chromosome 9. The QTLs related to culm length was found to chromosomes 5 and LOD scores were 3.81. The QTLs related to ear length was found to chromosomes 2 and 3 LOD scores were 7.13 and 3.20. The QTLs related to ear number was found to chromosome 9 and LOD scores were 4.27. Twenty two (22) Japonica cultivars and 12 Indica cultivars were analyzed polymorphisms, using selected 9 markers from the result about plant form analysis. RM5311, RM555 and RM8111 about the culm length, the ear length and number of ear were selected on the standard of Cheongcheong and Nagdong. Each rate of concordances about the culm length, the ear length and number of ear are 44.11%, 41.17% and 44.11%.
        6.
        2011.04 KCI 등재 서비스 종료(열람 제한)
        Soybean proteins are widely used for human and animal feeds worldwide. The use of soybean protein has been expanded in the food industry due to their excellent nutritional benefits. But, antinutritional and allergenic factors are present in the raw mature soybean. P34 protein, referred as Gly m Bd 30K, has been identified as a predominant immunodominant allergen. The objective of this research is to identify the genetic mode of P34 protein for the improvement of soybean cultivar with a very low level of P34 protein. Two F2 populations were developed from the cross of "Pungsannamulkong" x PI567476 and "Gaechuck2ho" x PI567476 (very low level of P34 protein). Relative amount of P34 protein was observed by Western blot analysis. The observed data for the progeny of "Pungsannamulkong" and PI567476 were 133 seeds with normal content of P34 protein and 35 seeds with very low level of P34 protein (X2=1.157, P=0.20-0.30). For the progeny of "Gaechuck#1" and PI567476, the observed data were 177 seeds with normal content of P34 protein and 73 seeds with very low level of P34 protein (X2=2.353, P=0.10-0.20). From pooled data, observed data were 310 seeds with normal content of P34 protein and 108 seeds with very low level of P34 protein (X2=0.156, P=0.50-0.70). The segregation ratio (3:1) and the Chi-square value obtained from the two populations suggested that P34 protein in mature soybean seed is controlled by a single major gene. Single gene inheritance of P34 protein was confirmed in 32 F2 derived lines in F3 seeds, which were germinated from the low level of P34 protein obtained from the cross of "Pungsannamulkong" and PI567476. These results may provide valuable information to breed for new soybean line with low level of P34 protein and identification of molecular markers linked to P34 locus.
        7.
        2011.03 KCI 등재 서비스 종료(열람 제한)
        Dwarfuess and Kunitz trypsin inhibitor (KTI) protein in soybean is useful traits for basic studies. df2 and ti gene control dwarfness and the expression of Kunitz trypsin inhibitor (KTI) protein in soybean, respectively. The objective of this research was to verify genetic linkage or independent inheritance of df2 and ti loci in soybean. The F2 population was made by cross combination between "Gaechuck#2" (Df2Df2titi genotype, KTI protein absence and a normal growth type) and T210 (df2df2TiTi genotype, a dwarf growth type and KTI protein present). A total of 258 F2 seeds were analyzed for the segregation of KTI protein using SDS-PAGE. And so, 198 F2 plants were recorded for the segregation of dwarfness. The segregation ratio of 3 : 1 for Ti locus (201 Ti : 57 titi) and Df2 locus (143 Df2 : 55 df2df2) was observed. Segregation ratio of 9 : 3 : 3 : 1 (116 TiDf2: 44 Tidf2df2: 27 titiDf2: 11 titidf2df2) between df2 gene and ti gene was observed (x2 =3.53, P = 0.223). These results showed that df2 gene was inherited independently with the ti gene in soybean.
        9.
        2008.06 KCI 등재 서비스 종료(열람 제한)
        Lectin protein and Kunitz trypsin inhibitor (KTI) protein of mature  soybean seed are a main antinutritional factor in soybean seed. The Le gene controls a lectin protein and Ti gene controls the KTI protein in soybean. Ti locus has been located on linkage group 9 in the classical linkage map of soybean. Position of Le locus on linkage map was not identified. Genetic relationship between Ti locus and Le locus could be useful in soybean breeding program for the genetic elimination of these factors. The objective of this study was to determine the independent inheritance or linkage between Ti locus and Le locus in soybean seed. Two F2 populations were developed from three parents (Gaechuck#1, T102, and PI548415). The F1 seeds from Gaechuck#1 (titiLeLe) x T102 (TiTilele) and Gaechuck#1 (titiLeLe) x PI548415 (TiTilele) were obtained. The lectin and KTI protein were analysed from F2 seeds harvested from the F1 plants to find independent assortment or linkage between Ti locus and Le locus. The segregation ratios of 3 : 1 for Le locus (129 Le_ : 44 lele) and Ti locus (132 Ti_ : 41 titi) and were observed. The segregation ratios of 9 : 3 : 3 : 1 (95 Le_Li_ : 34 Le_titi: 37 leleTi_ : 7 leletiti) between Le gene and Ti gene in F2 seeds were observed. This data showed that Ti gene was inherited independently with the Le gene in soybean. These results will be helpful in breeding program for selecting the line with lacking both KTI and lectin protein in soybean.
        10.
        2007.12 KCI 등재 서비스 종료(열람 제한)
        A field experiment was conducted to investigate effects of application time and rate of biofertilizer alone and in combination with chemical NPK fertilizer on growth, yield and quality of rice. The biofertilizer used composted food waste as substrate and added with effective microorganism. The treatments included recommended NPK fertilizer(RF, 11-5.5-4.8kg~;10a-1 ), half recommended NPK fertilizer(HRF, 5.5-2.8-2.4kg~;10a-1 ), half recommended NPK fertilizer plus 250kg~;10a-1 biofertilizer(HRF+Bio 250) and 500kg~;10a-1 biofertilizer(HRF+Bio 500). The biofertilizer treatments were applied at 0, 5 and 10 days before transplanting(DBT). Grain yield of HRF+Bio 250 at 5 DBT(648.4kg~;10a-1 ) was statistically similar to the highest obtained in the RF(654.1kg~;10a-1 ). Tiller numbers at HRF plus biofertilizer treatments were already high during the maximum tillering stage, and were similar with that of the RF and higher than that of the HRF during heading stage. Likewise, ripening ratio at HRF plus biofertilizer treatments was similar with that of the RF and higher than that of the HRF. Furthermore, all the biofertilizer treatments improved protein content but reduced the amylose content and palatability compared to treatments with chemical NPK fertilizer alone. Thus, HRF+Bio 250 at 5 DBT can be used to save 50% chemical NPK fertilizer and at the same time obtain an improved rice grain yield and quality.
        11.
        2007.12 KCI 등재 서비스 종료(열람 제한)
        The effect of mixed treatments of wood vinegar and sulfonylurea-based herbicides on weed control, yield and yield components, and quality of rice was investigated. Two herbicides were tested namely: imazosulfuron-ethyl+thiobencarb[ethyl-1-(2-chloroimidazo[1,2-α ]pyridin-3-ylsulfonyl)-3-(4,6-dimethoxypyrimidin-2-yl) urea+S-4-chlorobenzyl diethyl(thiocarbamate)], and bensulfuronmethyl+butachlor [methyl α -[(4,6-dimethoxypyrimidin-2-ylcarbamoyl)sulfamoyl]-o-toluate+N-butoxymethyl-2-chloro-2',6'-diethylacetanilide]. The experiment was carried out in a randomized complete block design with 3 replications and 5 treatments. Treatments used were recommended(RH: 100%) and half-recommended(HRH: 50%) application rates of each herbicide. Half-recommended application rates were combined with 1 mL wood vinegar 500mL~;water-1 (500) and 1 mL wood vinegar 1000mL~;water-1 (1000) wood vinegar. Plots for no herbicide treatments were also prepared and used as control. Results showed that wood vinegar significantly increased efficacy of HRH in bensulfuron-methyl+butachlor while high efficacy was already obtained in HRH treatment of imazosulfuron-ethyl+thiobencarb. Wood vinegar did not improve the efficacy of imazosulfuron-ethyl+thiobencarb but improved rice yield. Significantly similar rice yields were obtained in the HRH+1000 WV and RH treatments of both herbicides. There were no significant variations in the yield components among the treatments; however, differences in yield can be attributed to the variations in the spikelet number and ripening ratio. Data on rice quality analysis did not show clear trend on the effects of the treatments on grain appearance and nutritional quality.
        12.
        2007.09 KCI 등재 서비스 종료(열람 제한)
        The effect of biofertilizer in enhancing nutrient quality and antioxidant property of rice grain was investigated. The experiment was carried out in a randomized complete block design with 3 replications and 7 treatments namely : RF = N-P2O5-K2O(11-5.5-4.8kg~;10a-1); half of the recommended fertilizer rate, HRF=N-P2O5-K2O(5.5-2.75-2.4kg~;10a-1): HRF+Bio 250=HRF combined with 250 kg Biofertilizer 10 a-1 ; HRF+Bio 500=HRF combined with 500 kg Biofertilizer 10 a-1; Bio 250=250 kg Biofertilizer 10 a-1; Bio 500=500 kg Biofertilizer 10 a-1; and NF=No Fertilizer. Results showed that HRF+Bio 500 obtained a significantly higher protein content but a significantly lower amylose content compared with RF and NF treatments. Highest phytic acid content was recorded in NF treatment while the lowest was observed in HRF+500 treatment. The highest values in both electron donating ability and reducing power were obtained in HRF+Bio 500 treatment. All treatments obtained higher reducing power than that of the RF treatment and that NF treatment showed comparable values in both electron donating ability and reducing power with those of the treated plots. Highest antimutagenicity property was also observed in HRF+Bio 500 treatment followed by Bio 500 treatment. This study showed the possibility of using biofertilizer to enhance nutritional quality and antioxidant property of rice.
        13.
        2006.09 KCI 등재 서비스 종료(열람 제한)
        The effect of biofertilizer (compound of microbial inoculants or groups of micro-organisms) on growth and yield of rice was investigated. The experiment was carried out in a randomized complete block design with 3 replications and 7 treatments namely: RF=N-P2O5-K2O (11-5.5-4.8 kg 10a-1 ); half of the recommended fertilizer rate, HRF=N-P2O5-K2O (5.5-2.75-2.4 kg 10a-1 ); HRF+Bio 250=HRF combined with 250 kg biofertilizer 10a-1 ; HRF+Bio 500=HRF combined with 500 kg biofertilizer 10a-1 ; Bio 250=250 kg biofertilizer 10a-1 ; Bio 500=500 kg biofertilizer 10a-1 ; and NF = No Fertilizer. Results showed that the recorded values of plant height, tiller number and chlorophyll content at 40 to 60 days after transplanting (DAT) in HRF+Bio 500 were significantly higher than those recorded in the RF treatment. Similar observations between these two treatments were only recorded from 60 DAT onwards. Yield components were also superior in HRF+Bio 500 treatment and comparable to that of RF. The highest grain yield obtained in HRF+Bio 500 treatment (785.8 kg 10a-1 ) was statistically similar to that of RF (739.8 kg 10a-1 ) but significantly higher than that of NF (506.7 kg 10a-1 ). Finally, head grain recovery (90.9) was low while chalkiness (0.03) was high at HRF+Bio 500 treatment as compared with RF, which were (96.1) and (0.3), respectively. Results showed that combined treatment of HRF and 500 kg biofertilizer 10a-1 has similar effects on the growth and yield of rice with that of RF.