In this work, we investigated the photo-degradation performance of MnO2-SiC fiber-TiO2 (MnO2-SiC-TiO2) ternary nanocomposite according to visible light excitation utilizing methylene blue (MB) and methyl orange (MO) as standard dyes. The photocatalytic physicochemical characteristics of this ternary nanocomposite were described by X-ray diffraction (XRD), scanning electron microscopy (SEM), tunneling electron microscopy (TEM), ultraviolet-visible (UV-vis), diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), photocurrent and cyclic voltammogram (CV) test. Photolysis studies of the synthesized MnO2-SiC-TiO2 composite were conducted using standard dyes of MB and MO under UV light irradiation. The experiments revealed that the MnO2-SiC-TiO2 exhibits the greatest photocatalytic dye degradation performance of around 20 % with MB, and of around 10 % with MO, respectively, within 120 min. Furthermore, MnO2-SiC-TiO2 showed good stability against photocatalytic degradation. The photocatalytic efficiency of the nanocomposite was indicated by the adequate photocatalytic reaction process. These research results show the practical application potential of SiC fibers and the performance of a photocatalyst composite that combines these fibers with metal oxides.
Recently, it is demonstrate that the invertebrates have a immune memory, called Immune priming (IP). It was partially studied that the IP is mainly regulated by epigenetic modification. Here, to understand the IP on antimicrobial peptides (AMPs) production, we investigated larval mortality and time-dependent expression patterns of AMP genes in T. molitor larvae challenged with E. coli (two-times injection with a one-month interval). Interestingly, the results indicate that the higher and faster expression levels of most AMP genes were detected compared to the non-primed T. molitor larvae. Our results may used to improve the understanding of mechanisms of invertebrate immune memory.
자생식물은 관상용, 약용, 식량자원으로 활용될 수 있는 잠재력을 지닌 고유 유전자원이다. 돌부추(Allium koreanum H.J. Choi & B.U. Oh)는 우리나라 해안 암반지대에 분포하는 자생식물 중 하나로, 기후변화와 서식지 감 소로 인해 보전 가치가 높은 식물이다. 이번 연구는 온도와 과산화수소가 돌부추의 발아에 미치는 영향을 조사하기 위해 수행되었다. 종자를 무처리(대조군) 또는 1% 과산화수소(H2O2)로 90분간 처리한 종자를 준비해 15, 20, 25°C 로 설정된 식물 생장 챔버에 배치하였다. 그 결과, 파종 23일 후 15°C에서 42%인 발아율이 20°C와 25°C에서 각각 18%와 0%인 발아율보다 2배 이상 높았으며, H2O2 처리 여부와 관계없이 15°C에서 발아율이 42%로 가장 높았다. H2O2 처리와 관계없이 최종 발아율 50%(T50)에 도달하는 일수는 20°C에서 가장 짧았지만, 일평균 발아율(MDG)은 15°C에서 가장 높았다. 따라서 1%의 H2O2 처리는 돌부추의 발아율에 큰 영향을 미치지 않았으며, 15°C의 온도가 돌부추의 발아율을 높이는 데 최적인 것으로 판단된다. 본 연구 결과는 돌부추의 발아를 위한 기초 연구 자료로 활 용될 수 있을 것으로 기대된다.
During the larval development process of insects, juvenile hormone (JH) is essential for regulating various aspects of larval life, including growth, reproduction, and behavior, throughout their larval stage. The larval stage of Spodoptera frugiperda, when it consumes plant-derived metabolites, develops into pupae, but these pupae are unable to molt successfully. In this way, plant-derived metabolites contain or produce inhibitors of juvenile hormone, thereby disrupting the development of insect larvae and making them vulnerable to harm. Therefore, in this study, we established an in vitro screening system using yeast cells transformed with the Met-SRC juvenile hormone receptor of S. frugiperda. Through this system, we were able to identify juvenile hormone disruptors from plant-derived metabolites and confirm their developmental inhibitory effects on the larvae of S. frugiperda.
Colon cancer has been considered a leading cause of cancer-associated death. Folic acid is a vitamin necessary for cellular physiological functions and cell viability. However, the association between folic acid intake and colon cancer has been examined in several prospective cohort studies are controversial. This study investigated the effects of folate intake on colon carcinogenesis and oxidative stress in an azoxymethane (AOM)/dextran sodium sulfate (DSS) institute for cancer research (ICR) mouse model. Thirty male ICR mice (5 weeks old) were divided into the control group and the experimental group supplied 0.03% folic acid via drinking water (50 mL/week/mouse) for 6 weeks. To induce colonic pre-neoplastic lesions, the animals were subcutaneously injected three times weekly with AOM (10 mg/kg body weight), followed by 2% DSS in drinking water for a week. Folic acid supplementation significantly suppressed the total number of aberrant crypt foci and aberrant crypts. Histological image data showed that folic acid supplementation attenuated neoplastic change. In addition, we measured the thiobarbituric acid reactive substances concentration of dry feces samples to identify the effect of folic acid on reactive oxygen accumulation. The folic acid supplementation group had reduced reactive oxygen species levels in dry feces compared to the control group. In conclusion, these findings indicate that folic acid suppresses colon carcinogenesis and oxidative stress in an AOM/DSS mouse model.
The content of harmful materials was investigated for coffee beans sold in Daejeon. Total 79 samples were analysed and 213 residual pesticides and 2 heavy metals were analysed simultaneously by GC-MS/MS, GC-NPD, GC-ECD, LC-MS/MS and ICP-MS. The instrumental method was validated with limit of detection (LOD), limit of quantification (LOQ), the linearity of standard curves. LOD of the residual pesticides was between 0.0003 to 0.0021 mg/kg, LOQ of the residual pesticides was between 0.0008 to 0.0064 mg/kg. LOD of the heavy metals was between 0.0077 to 0.0079 μg/kg, LOQ of the heavy metals was between 0.0233 to 0.0239 μg/kg. The linearity correlation coefficient for the calibration curve was between 0.9929 to 0.9999 and the recovery rate was between 95.4% to 106.1%. According to the monitoring of residual pesticides and heavy metals, no pesticide was detected in all coffee bean samples. 88.6% (70 samples) of analysed total 79 coffee beans contained at least 1 heavy metal but there was no sample which exceeded the maximum residual limit. Risk assessment was also carried out based on the content of heavy metals detected in coffee beans. The carcinogenic risk assessment to heavy metals showed that all cancer-risk (CR) values were below 10–6 and it meant that the CR due to heavy metals intake was evaluated as safe. The non-carcinogenic risk assessment to heavy metals showed that all hazard index (HI) were below 1, which was considered acceptable at the current level of exposure. The %PTWI values of lead and cadmium for 55 roasted coffee bean samples were 0.09% and 0.04% respectively, compared with the reference values. This results indicate that there is almost no health risk from heavy metal intake through the consumption of coffee beans in circulation in Daejeon.
후각 신경 시스템은 일반 생활 환경에서 많은 다양한 화학 물질을 인식하고 구별한다. 곤충에서는 다양한 화학 물질을 기호적 또는 회피적인 특이성을 부여하고 이를 구분해 낼 수 있는 고도로 발달된 후각신경 수용체들로 구성된 냄새 맡는 (odorant-gated) 이온 채널 군을 진화시켰다. 최근에 후각 수용체와 단백질을 포함한 olfaction 관련한 진딧물 게놈 밝혀졌고, 초파리에서 다양하게 분화되어 있는 후각 수용체들이 보고되고 있다. 후각 신경 수용체의 유전체는 매우 높은 보전적인 염기 서열을 가지고 있으며, 체계적인 신호 전달 시스템을 갖추고 있다. 대표적 수용체인 odorant-gated ion channels comprised of a highly conserved co-receptor (Orco)는 중심 구멍 주위에 대칭 적으로 배열된 4 개의 서브 유닛을 갖는 homotetramer 채널 구조를 가지고 있다. 이는 인체 내에 존재하는 7-transmembrane receptor와 매우 유사한 구조를 형성하고 있고, 신경전달물질의 수용체와 매우 유사한 구조적 형태 및 gating mechanism을 가지고 있다.
본 연구에서는 초파리에서 분리한 후각 신경 수용체 하위 유형인 OR65 유전자 분리하여 세포 발현 시켜 Xenopus oocyte를 이용하여 Whole cell voltage clamp recording을 실시하였다. 본 수용체의 성공적인 발현 이후 유해 해충 유인제 개발 회사인 마이크로자임의 미생물 배양 추출물을 이용해서 후각 신경 수용체 활성 조절 여부를 연구하였다. 미생물 배양 추출물을 10,000배 희석한 recording media에서 수용체의 활성을 확인하였고, 이를 농도 별로 처리하여 농도 의존성 수용체 활성 작용을 확인하였다.
따라서 곤충의 후각 신경 수용체 활성 조절 시스템을 이용하여 유인물질 또는 기피 물질을 발굴할 수 있으며, 본 연구를 통해서 MZ01은 곤충 수용체 OR65를 활성 시킴으로써 유인 현상을 나타내며, 본 연구를 통해서 현장에서 검증된 미생물 배양 추출물의 성능을 과학적 분석으로 결과를 제시하였다.
This study is investigated the growth characteristics(number of available stipe, pileus diameter, pileus thickness, stipe length, stipe thickness, object weight, comparison yield ability of 1 cycle) and storage characteristics of ‘Sanjo 701’ (S7) cultivars according to relative humidity. The S7 growth characteristics were investigated by quantifying the growth and the characteristics according to the relative humidity, The storage stability was investigated every 5 days and freshness was measured by ‘Minamide Method’. S7 pileus diameter is The higher the relative humidity was confirmed becomes larger and the more increased relative humidity also increase the comparison yield ability of 1 cycle. However, pileus diameter or stipe length This could not see the big difference in the three treatment groups, the plieus thickness was no significant difference in the treatment of 80% and 95%. The fresh weight of S7 decreased significantly at 80% and 95% relative humidity after 10 days of storage, but decreased continuity in 65% humiditiry. The elongation percentage of S7 pileus was observe in 95% relative humidity, values of L, a and b (SCI), showed the highest L value in 65% and the a value in 95%. b values were similar in 65%, 80% and 95% treatments. On the ‘Minamide Method’ measure freshness was changed from the 10th day of storage at relative humidity of 95%, but humidity of 65% and 80% treatments, it changed after 15 days of storage. In this study growth characteristics and yield were increased at higher relative humidity, but storage stability was decreased. Therefore, it is deemed necessary to change the relative humidity to produce high quality mushrooms.