Diatoms, which are reported to have over 18,000 species worldwide and approximately 2,400 species in Korea, can be found in various environments including freshwater, seawater, and wetlands. They are particularly valuable for understanding global environmental changes throughout history due to their ability to maintain their shape for extended periods of time. Instead of collecting floating diatoms using nets, low-layer substrates such as gravel and leaves, as well as sedimentary surface layers, were gathered in order to identify attached diatom species. This is because attached diatoms demonstrate higher species diversity compared to floating diatoms. In this study, seven previously unrecorded diatoms were discovered in various domestic freshwater environments. Two species were found in reservoirs (Eunotia yanomami, Gomphonella pseudookunoi), two in parasitic cones (Eunotia carverenensis, Luticola minor), two in rivers (Cavinula maculata and Prestauroneis integra), and one (Surirella brebissonii var. kuetzingii) in a lagoon. The shapes, structures, and morphological characteristics of each diatom were identified using electron microscopy.
In agricultural ecosystems, the relationship between insect pests and hosts is important, as insect pests can invade hosts, increasing insect pest density that threatens the hosts’ health. Insect pests and hosts are negatively correlated and affect the environment around them. i.e., host health, environment, and insect pest density are causally related, and the environment affects insect pest density. Deep learning is method of machine learning based on neural network theory. This approach enables handling uncertain environmental factors that simultaneously impact the density of F. occidentalis. Environmental factors affecting the density fluctuation of F. occidentalis selected atmosphere factors, soil factors, and host factors. This study aims to F. occidentalis monitoring using deep learning models inputting environmental factors.
As climate changes and global trade volume increases, the spread of invasive alien species accelerates. Early prevention before occurrence is crucial for invasive pest control. Therefore, this study modeled the current and future potential distribution of the tomato leafminer(Tuta absoluta) (Meyrick) (Lepidoptera: Gelechiidae), the most significant pest affecting tomatoes, in Korea. This pest primarily feeds on Solanaceae crops and can cause extensive damage, resulting in 50-100% loss of crops in greenhouses or fields. While previously unreported in Korea, it invaded China in 2017, indicating a potential threat to Korea. The potential distribution of the tomato leafminer in Korea under current and three future climate scenarios (SSP1-26, SSP3-70, SSP5-85) was predicted using the MaxEnt model. Additionally, elevation and land cover were incorporated as abiotic factors considering the ecological characteristics of the pest.
Density survey should be carried out for applying integrated pest management strategies, but it is labor-intensive, time- and cost-consuming. Therefore, binomial sampling plans are developed for estimating and classifying the population density of whiteflies late larvae based on the relationship between the mean density per sample unit (7 leaflets) and the proportion of leaflets infested with less than T whiteflies ( ). In this study, models were examined using tally thresholds ranging from 1 to 5 late larvae per 7 leaflets. Regardless of tally thresholds, increasing the sample size had little effect on the precision of the binomial sampling plan. Based on the precision of the model, T=3 was the best tally threshold for estimating the densities of late larvae. Models developed using T=3 validated by Resampling Validation for Sampling Plan program. Above all, the binomial model with T=3 performed well in estimating the mean density of whiteflies in greenhouse tomato.
Animal experiments have demonstrated the effectiveness of fermented rice germ and soybean extracts in lowering blood alcohol concentration. A compound primarily derived from fermented soybean extract constitutes the principal component of DA-5521, an experimental dietary substance examined in this study. We investigated the possible hangover-alleviating effects of DA-5521 in individuals aged 19 to 50 who had previously experienced hangovers. Moreover, we enrolled 22 participants who met the eligibility criteria and conducted a double-blind, randomized, placebo-controlled crossover trial. Six hours after alcohol consumption, the test group exhibited a statistically significant reduction in blood acetaldehyde concentration compared with the placebo group. Further, our results displayed significantly lower levels in the DA- 5521 group at 0.50 and 0.75 h post-ingestion and substantially lower peak breath alcohol concentration compared to the placebo group. These findings confirm that consumption of DA-5521 can significantly ameliorate hangover symptoms by diminishing blood acetaldehyde concentration and reduce breath alcohol concentration.
The emergence of ferrous-medium entropy alloys (FeMEAs) with excellent tensile properties represents a potential direction for designing alloys based on metastable engineering. In this study, an FeMEA is successfully fabricated using laser powder bed fusion (LPBF), a metal additive manufacturing technology. Tensile tests are conducted on the LPBF-processed FeMEA at room temperature and cryogenic temperatures (77 K). At 77 K, the LPBF-processed FeMEA exhibits high yield strength and excellent ultimate tensile strength through active deformation-induced martensitic transformation. Furthermore, due to the low stability of the face-centered cubic (FCC) phase of the LPBFprocessed FeMEA based on nano-scale solute heterogeneity, stress-induced martensitic transformation occurs, accompanied by the appearance of a yield point phenomenon during cryogenic tensile deformation. This study elucidates the origin of the yield point phenomenon and deformation behavior of the FeMEA at 77 K.
Pitfall traps that use ethylene glycol as a preservative solution are commonly used in arthropod research. However, a recent surge in cases involving damage to these traps by roe deer or wild boars owing to the sweet taste of ethylene glycol has prompted the addition of quinone sulfate, a substance with a pungent taste, to deter such wildlife interference. This study aimed to assess the effects of quinone sulfate on arthropods collected from pitfall traps containing ethylene glycol. We strategically positioned 50 traps using ethylene glycol alone and 50 traps containing a small amount of quinone sulfate mixed with ethylene glycol in a grid pattern for systematic sampling at the Gwangneung Forest long-term ecological research (LTER) site. Traps were collected 10 days later. The results revealed a notable effect on ants when quinone sulfate was introduced. Specifically, it decreased the number of ants. In a species-specific analysis of ants, only Nylanderia flavipes showed a significant decline in response to quinone sulfate, whereas other ant species remained unaffected. Additionally, among the arthropod samples obtained in this survey, we identified species or morpho-species of spiders, beetles, and ants and assessed species diversity. Consequently, the utilization of quinone sulfate should be undertaken judiciously, taking into account the specific species composition and environmental characteristics of the monitoring site. Our study also highlighted the significant response of various arthropod groups to variations in leaf litter depth, underscoring the crucial role of the leaf litter layer in providing sustenance and shelter for ground-foraging arthropods. Furthermore, we have compiled comprehensive species lists of both spiders and ants in Gwangneung forest by amalgamating data from this investigation with findings from previous studies.
This study aimed to prepare kombucha, a fermented tea beverage, containing Dendropanax morbiferus (DM) leaves and roots, and analyze its antioxidant and intracellular activities. We compared the pH change, total acidity, radical scavenging activity, and oxygen radical absorbance capacity (ORAC) of kombucha fermented with black tea alone and that with added DM leaves or roots during fermentation. Using RAW 264.7, we evaluated the effects of kombucha containing different DM parts on nitric oxide (NO) production and inflammation-related cytokine content in cells. Kombucha containing ethanol extracts of DM leaves (BTK-E-DML) and roots (BTK-E-DMR) showed higher radical scavenging activity and ORAC 3 d after fermentation than that prepared from black tea alone (BTK-Ori). In an in vitro experiment using RAW 264.7, samples were treated with 8 mg/mL kombucha considering cytotoxicity; the lipopolysaccharide (LPS)-induced NO content significantly reduced after BTK-E-DML and BTK-EDMR treatments compared with that after BTK-Ori treatment. Additionally, the levels of interleukin-6 and tumor necrosis factor-alpha, which were LPS-stimulated inflammatory cytokines, significantly decreased in cells treated with BTK-E-DML and BTK-E-DMR 15 d after fermentation compared with those treated with BTK-Ori. In conclusion, these results demonstrate that kombucha fermented with the leaves and roots of DM increases antioxidant activity and can significantly regulate inflammatory responses at the cellular level.
Wasteform is the first barrier to prevent radionuclide release from repositories into the biosphere. Since leaching rates of nuclides in wasteform significantly impact on safety assessment of the repository, clarifying the leaching behavior is critical for accurate safety assessment. However, the current waste acceptance criteria (WAC) of the Gyeongju repository only evaluates leachability indexes for Cs, Sr, and Co, which are tracers for nuclear power plant waste streams. Furthermore, ANS 16.1, the current leaching test method used in WAC, applies deionized water (DI) as leachant. However, the interactions between wasteform and groundwater environment in the repository may not be reflected. Therefore, it is necessary to review the current leaching test method and nuclides that may require the extra evaluation of leachability beyond the Cs, Sr, and Co. Tc and I are key nuclides contributing to high radioactive dose in safety assessment due to their high mobility and low retardation factor. The groundwater conditions within the repository, such as pH and Eh significantly affect the chemical form of Tc and I. For example, Tc in H2O system tends to form hydroxide precipitates in neutral pH condition and TcO4 - in strong alkaline environments according to the Pourbaix diagram. In case of I, it generally exists in the form of I-, while it exists as IO3 - as Eh increases. Although the current leaching test at the Gyeongju repository applies DI as a leachant, the actual repository is expected to have a highly alkaline environment with a substantial amount of various ions in the groundwater. Consequently, the leaching behavior in the ANS 16.1 test and the actual disposal condition is different. Thus, it is necessary to analyze the leaching behavior of Tc and I with reflecting the actual disposal environment. In this study, the leaching behavior of Tc and I is investigated by following ANS 16.1 leaching test method. The solidified waste specimens containing 10 mmol of Re and I were manufactured with cement, which is widely used as a solidification material. Re was applied instead of Tc, which has similar chemical behavior to Tc, and NH4ReO4 and NaI were used as surrogates for Re and I. As a leachant, deionized water and cement-saturated groundwater were prepared and the concentration of nuclides in the leachant is analyzed by ICP-OES. As the result of this study, experimental data can be applied to improve the WAC and disposal concentration standards in the future.