Once decommissioning begins, it is expected that large amount of radioactive wastes will be produced in a short period of time. The expected amount of radioactive wastes from Kori unit 1 NPP are approximately 80,000 drums (base on 200 L). By minimizing the amount of radioactive wastes generated through decontamination and reduction, KHNP has set the final target for the amount of radioactive wastes to be delivered to the disposal site at approximately 14,500 drums. Here, plasma torch melting technology is an essential technology for radioactive wastes treatment during nuclear power plants decommissioning and operation, because of its large volume reduction effects and the diversity of disposable wastes. KEPCO KPS was able to secure experience in operating Plasma Torch Melter (PTM) by conducting a research service for ‘development of plasma torch melting system advancement technology’ at KHNP-CRI. This study will compare kilo and Mega-Watt class PTM, largely categorized into facility configurations, operating parameters, and waste treatment. Based on this study, it would be desirable to operate PTM with approximate capacity according to the frequency and amount of waste production, and suggest volume for a kilo and Mega-watt class plasma torch in the melting furnace respectively. This plays to its strengths for both a kilo and Mega-watt class PTM.
Dry active wastes (DAWs) are combustible waste generated during the operation and decommissioning of nuclear facilities, and are known to be generated in the amount of approximately 10,000 to 40,000 drums (based on 200 L) per unit. It consists of various types of protective clothing, paper, and plastic bags, and is stored in radioactive waste storage facilities. Therefore, reducing the volume of DAWs is an important issue in order to reduce storage costs and utilize the limited space of waste storage facilities. Heat treatment such as incineration can dramatically reduce the volume of waste, but as the waste is thermally decomposed, CO2, a global warming gas, is generated and there is a risk of emissions of harmful gases including radionuclides. Therefore, a heat treatment process that minimizes the generation of CO2 and harmful gases is necessary. One of the alternatives to incineration is to carbonize DAWs, dispose of carbonized materials below the release standard as non-radioactive waste, and selectively separate and stabilize inorganic components, including radionuclides, from carbonized DAWs. In this study, 13 types of DAWs generated from nuclear power plants were selected and their thermal decomposition characteristics were investigated to design a heat treatment process that replaces incineration. As a result of TGA analysis, the temperature at which thermal decomposition of each waste begins is 260-300°C for cotton, 320-330°C for paper, 315-420°C for synthetic fiber, 350°C for latex gloves. The mass of most samples decreased to less than 1 % of the initial weight after heat treatment, and dust suit and latex gloves had residues of 13.83% and 13.71% of the initial mass, respectively. The metal components of the residue produced after heat treatment of the sample were analyzed by EDS. According to the EDS results, cotton contains Ca and Al, paper contains Ca, Al and Si, synthetic fiber contains Ca, Cu and Ti, latex gloves contain Ca and Mg. Additionally, ICP analysis was performed to quantify the inorganic components. These results are expected to be applicable to the processing of DAW generated at nuclear facilities in the future.
KHNP-CRI has developed small-capacity and Mega-Watt Class PTM (Plasma Torch Melter) for the purpose of reducing the volume of radioactive waste and immobilizing or solidifying radioactive materials. About 1 MW PTM is a treatment technology that operates a plasma torch and puts drumshaped waste into a melter and radioactive waste in the form of slag is discharged into a waste container. The small-capacity PTM is a treatment technology that operates a plasma torch and puts small amounts of radioactive waste by directly putting it into the melter through a waste input machine. Mega-Watt Class PTM was able to inject radioactive waste in drums, so it was disposed of without backloging. On the other hand, The small-capacity PTM put radioactive waste without a package, and the waste input was blocked. If even small-capacity PTM put radioactive waste in the form of small packages such as drums, it is expected that various types of radioactive waste can be processed for a long time. Packaging also reduces the risk of radioactive contamination.
Thermal treatment, such as combustion, is the most effective way to solve the spatial problem of radioactive waste disposal. Existing incineration technology has the problem of discharging harmful pollutants (CO2 and dioxin, etc.) into the environment. Therefore, it was evaluate the validity of the thermal treatment process that can reduce the volume of dry active waste (DAW) in an eco-friendly. In addition, the stability of the alternative incineration process under development was evaluated by evaluating the emission of harmful pollutants to the environment during the thermal treatment process. We selected 14 samples identical to those discarded by each nuclear power plant (Kori, Saeul, Wolsong, Hanbit, Hanul). And EA (Elemental Analysis) analysis was performed on each sample. As a result, excluded samples containing wastes containing POPs (Persistent Organic Pollutants) such as PCBs (Polychlorinated Biphenyls), which could generate harmful pollutants during thermal treatment, and halogenated organic wastes such as PVC (Polyvinyl Chloride). In addition, the thermal treatment conditions for the four DAWs were derived by Thermogravimetric Analysis/Differential Thermal Analysis (TG/DTA) analysis. At this time, Py-GC/MS analysis was performed at the temperature at which each waste causes thermal decomposition (cotton is 437°C, paper is 562°C, latex glove is 430°C, plastic bag is 485°C). As a result of analyzing the exhaust gas produced during thermal decomposition, about 77.0% of the cotton was Benzoic acid series, the paper was 41.1% Glucopyranose series, and 15.8% hydroxy acetaldehyde. Latex glove was identified to be 45.9% and 19.2% for Limonene and 2-methyl-1, 3-Butadiene, and for plastic bags, Octacosanol and 2-octyl-1-Dodecanol were 38.8% and 15.2%. In addition, it was confirmed that dioxin and harmful heavy metals, which are discussed as environmental risks, were not detected in all samples.
We conducted multi-elements determination of reference material certified by the Inorganic Ventures, IV-26, using iCAP 7400 ICP-OES of Thermo Fisher Scientific. And we statistically evaluated analysis results by introducing the in-house proficiency evaluation method implemented at the Ministry of Food and Drug Safety. Ca, Co, Fe, Mg, Ni, and V were selected as target elements, and extended uncertainty was estimated at a confidence level of about 95% and coverage factor k = 2. Five parameters incurred at manufacturing process (standard solution, calibration curve, repeated measurement and dilution factor of the test sample) were considered when determining the uncertainty. En-score can be calculated using the formula En=(x-X)/(Ulab 2+Uref 2)1/2 described in KS Q ISO 13528, where x, Ulab, X, and Uref are the test results, the uncertainty of the result, and the certified value and the uncertainty of the value. And if the absolute value |En| is less than 1, it can be evaluated as a satisfied value. As a result of ICP-OES analysis, each concentration of the elements to be measured was almost similar to the certified concentration of the reference material, and the uncertainty was slightly different. Also since evaluation on multi-elements determination had an En-score within 1, it was confirmed that the analysis results satisfied En evaluation.
KHNP-CRI has developed Mega-Watt Class PTM (Plasma Torch Melter) for the purpose of reducing the volume of radioactive waste and immobilizing or solidifying radioactive materials. About 1 MW PTM is a treatment technology that operates a plasma torch and puts drum-shaped waste into a melter and radioactive waste in the form of slag is discharged into a waste container. Since only the overflowing slag is discharged from the melter, the discharge is intermittent. Therefore, solidification occurs in the process of discharging the melt. It is difficult to accumulate evenly in the waste container, and there is also an empty space. Solid radioactive waste must be disposed of to meet the acceptance criteria for radioactive waste. Plasma-treated solid waste raised concerns about the requirements. The waste solidification output in a slag container gave us some concerns for the waste package’s solidification and encapsulation requirements. The plasma-treated solid waste process to meet the acceptance criteria will be cost and need time consuming. Thus, a induction heating will be introduced to meet solidification requirements and test criteria of the solidification waste for the waste package disposal.
For the peaceful use of nuclear energy, the international community has devoted itself to fulfilling its obligations under the Safeguards Agreement with IAEA. In this regard, uranium in a radioactive waste drum should be analyzed and reported in terms of mass and 235U enrichment. In order to characterize radioactive wastes, gamma spectroscopy techniques can be effectively applied. In the case of high-resolution gamma spectroscopy, because an HPGe detector can provide excellent energy resolution, it can be applied to analyze a mixture having a complicated isotopic composition. However, other substances such as wood, concrete, and ash are mixed in radioactive waste with various form factors; hence, the efficiency calibration is difficult. On the other hand, In Situ Object Counting System (ISOCS) has a capability of efficiency calibration without standard materials, making it possible to analyze complex radioactive wastes. In this study, the analysis procedure with the ISOCS was optimized for quantification of radioactive waste. To this end, a standard radioactive waste drum at KEPCO NF and low-level radioactive waste drums at Korea Radioactive Waste Agency (KORAD) were measured. The performance of the ISOCS was then evaluated by Monte Carlo simulations, Multi-Group Analysis for Uranium (MGAU) code, and destructive analysis. As a result, the ISOCS showed good performance in the quantification of uranium for a drum with the homogenized simple geometry and long measurement time. It is confirmed that the ISOCS gamma spectroscopy technique could be used for control and accountancy of nuclear materials contained in a radioactive waste drum.
This study was carried out to find out the changes in the growth characteristics and feed value of the three different whole-crop silage rice cultivars of whole-crop silage rice such as Jonong, Yeongwoo and Mogwoo to develop an efficient double cropping system. This study showed that there were significant differences biomass and feed values among cultivars but no clear difference among transplanting dates. Dry weight and height were in order of Mogwoo, Yeongwoo, Jonong (p<0.05). Dry weight and feed value of Jonong showed no significant difference after 21 days after heading (DAH), it was expected to be harvested before DAH 30 days. Yeongwoo showed a lower dry weight than Mogwoo, but heading date was earlier than Mogwoo, so one can expect a higher feed value than Mogwoo. Mogwoo had lower crude protein and total digestible nutrient than the other two cultivars but relative feed value in stem was higher than that of the other cultivars, but had higher dry weight than other cultivars so it was considered to take an advantage as a silage rice. Therefore, the results of this study suggest that the selection of whole-crop silage rice on the cropping system be made comprehensively by considering the heading characteristics of the cultivars and the feed value.
The effects of supplemental lighting (SL) timing on vegetative growth and the photosynthetic assimilation rate of young Cymbidium hybrids were examined. Nine month old C. ‘Yang Guifei’ and ‘Wine Shower’ were treated with four different SL timings: 22:00 – 02:00 (middle of the night, MN); 17:00 – 21:00 (end of day extension, DE); 07:00 – 09:00 plus 17:00 – 19:00 (both beginning and end of the night as split day extension, SDE), and non SL (8/16 h, short day, SD) for 4 months. All SL were provided by two types of 100% red LEDs (640 and 660 nm), with 150 μmol・m-2 ・s-1 and 800 μmol・mol-1 of CO2 supplied during the night (16 h). Pseudobulb diameters were significantly higher under SL treatments compared with the SD of both cultivars, irrespective of SL timing. Net photosynthetic assimilation rates were enhanced with increased SL, due to the additional photosynthesis and reduction of dark respiration. Thus, daily net photosynthetic amounts of SL treatments effectively increased photosynthesis compared to the SD. These results indicate that SL helps promote vegetative growth by enhancing photosynthesis. Since there were no significant differences among the SL timings when CO2 was provided uniformly during the night, we concluded that growth and photosynthesis of young Cymbidium do not depend on the timing of SL application, but are related to the daily light integrals, which is the amount of photosynthetically active photons delivered over 24 hours.
Prevalent usage of mobile devices among consumers has been well recognized and this is especially imperative among young adult consumers. The mobile phone became the gateway of their communication, media consumption, retail transaction, education, and (virtual) social life. However, there is little empirical research explaining the dynamics behind the psychological underpinning of young adult consumers, specifically Generation Y, to understand their usages and dependency on mobile phones. This study, therefore, aims to unveil antecedents and consequences of Gen Y consumers’ mobile phone dependency from a media psychological perspective. We developed a conceptual model based on theory of self-monitoring (Snyder 1974, 1987), extended self-concept (Belk, 1988), and media dependency theory (Ball-Rokeach & Defluer, 1976). Four hundred ninety-eight students in the U.S. provided usable responses to our pencil-and-paper survey. Causal modeling analysis results demonstrated that both ability to modify one’s behavior and sensitivity to cues for social appropriate behavior dimensions of the self-monitoring tendency positively predicted one’s level of fashion involvement, which in turn positively predicted his/her mobile phone dependency. Individual’s mobile phone dependency, fashion involvement and self-monitoring’s ability dimension exhibited positive and direct impact on one’s perception of the salience of mobile phone case product attributes. Based on the findings, we provided pragmatic and theoretical implications for the industry and academia.
Aronia is difficult to eat because it has a bitter taste, bitter taste, and sour taste. Because processing is essential for eating, quality information suitable for processing is needed. This experiment was carried out to confirm the step suitable for processing. Four grades of ripening were collected from 3 varieties (Viking, Nero, McKenzie) based on color, and compared with samples stored for 2 weeks after harvesting. Physicochemical properties such as color, hardness, sugar content, pH and acidity, functional components such as total polyphenols and flavonoids, and antioxidative activities such as DPPH and ABTS were investigated. When compared according to varieties, the hardness of the first degree was highest in other degrees, Depending on harvest time, first degree was higher than other degrees and it decreased with harvest time. Varieties was not significant different lightness, redness and yellowness value. compared according to harvest time, redness was the highest in second degree and lightness, yellowness decreased with harvest time. sugar content was highest in Nero and Mckenzie, birx value increased significantly of ripening and increased with harvesting time. pH was found to be highest in Nero, acidity value was the highest in viking. DPPH, ABTS radical scavening were Nero varieties had the highest radial scavening and increased significantly as the ripening degree increased. Total phenol and flavonoid contents were found to be highest in Nero, the highest content was showed at the first degree of harvesting. The most suitable stage for the processing was considered to be the best after post harvest treatments considering brix, hardness and acidity.