검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 24

        1.
        2024.04 구독 인증기관·개인회원 무료
        Over the last decade, there has been growing interest in the plastic degradation capabilities of insect because herbivorous insects may be a valuable resource for microorganisms that can break down synthetic plastics. Insects that can digest plastics using their gut microbiota are gaining interest for use in bioremediation, although their environmental benefits remain unknown. However, most plastics biodegraded by insect gut microbes are polyethylene, polystyrene with little knowledge available on the gut microbiome of insects capable of degrading other synthetic plastics. Therefore, there is an urgent need to secure microbial resources based on insect-microbiome interactions and promote end-of-life solutions for synthetic plastics.
        6.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The IoT-based sensor network is one of the methods that can be efficiently applied to maintain the facilities, such as bridges, at a low cost. In this study, based on LoRa LPWAN, one of the IoT communications, sensor board for cable tension monitoring, data acquisition board for constructing sensor network along with existing measurement sensors, are developed to create bridge structural health monitoring system. In addition, we designed and manufactured a smart sensor node for LoRa communication and established a sensor network for monitoring. Further, we constructed a test bed at the Yeonggwang Bridge to verify the performance of the system. The test bed verification results suggested that the LoRa LPWAN-based sensor network can be applied as one of the technologies for monitoring the bridge structure soundness; this is excellent in terms of data rate, accuracy, and economy.
        4,000원
        7.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국내 고도성장기 이후 본격 건설되기 시작한 사회 기반 시설물은 노후화가 빠르게 진행되고 있다. 특히 사고 발생 시 대량 인명 피해로 직결될 수 있는 교량, 터널 등의 대형 구조물에 대한 안전성 평가가 필요하다. 하지만 기존의 유선 센서 기반의 Structural Health Monitoring(SHM)을 개선한 무선 스마트 센서 네트워크는 짧은 신호 도달거리로 인해 경제적이고 효율적인 시스템 구축이 힘들다. 따라서 LoRa LPWAN 시스템은 사물인터넷의 확산과 더불어 저전력 장거리 통신이 각광을 받고 있으며, 이를 구조 건전성 모니터링에 응용함으로써 경제적이면서도 효율적인 모니터링 시스템 구축이 가능하다. 본 연구에서는 LoRa LPWAN 기반의 무선 계측센서 기술 동향을 조사하였으며, LoRa LPWAN 기반의 무선 계측센서 설치 및 유지관리 방안을 제안한다.
        4,000원
        8.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국내 고도성장기 이후 본격 건설되기 시작한 사회 기반 시설물은 노후화가 빠르게 진행되고 있다. 특히 사고 발생 시 대량 인명 피해로 직결될 수 있는 교량, 터널 등의 대형 구조물들에 대한 안전성 평가가 필요하다. 하지만, 기존의 유선 센서 기반의 SHM을 개선한 무선 스마트 센서네트워크는 짧은 신호도달거리로 인해 경제적이고 효율적인 시스템 구축이 힘들다. 따라서 LoRa LPWAN시스템은 사물인터넷의 확산과 더불어 저전력 장거리통신이 각광을 받고 있으며, 이를 구조건전성 모니터링에 응용함으로써 경제적이면서도 효율적인 SHM 구축이 가능하다. 본 연구에서는 LoRa LPWAN의 구조건전성 모니터링에 적용 가능성을 검토하고 비면허 통신 대역을 사용함으로 인해 발생하는 채널간의 충돌을 해결하면서 대역폭을 효율적으로 활용할 수 있는 채널 기반의 LoRa 네트워크 운영방법을 제안한다.
        4,000원
        9.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Foods are becoming more customized and consumers demand food that provides great taste and appearance and that improves health. Food three-dimensional (3D)-printing technology has a great potential to manufacture food products with customized shape, texture, color, flavor, and even nutrition. Food materials for 3D-printing do not rely on the concentration of the manufacturing processes of a product in a single step, but it is associated with the design of food with textures and potentially enhanced nutritional value. The potential uses of food 3D-printing can be forecasted through the three following levels of industry: consumer-produced foods, small-scale food production, and industrial scale food production. Consumer-produced foods would be made in the kitchen, a traditional setting using a nontraditional tool. Small-scale food production would include shops, restaurants, bakeries, and other institutions which produce food for tens to thousands of individuals. Industrial scale production would be for the mass consumer market of hundreds of thousands of consumers. For this reason, food 3D-printing could make an impact on food for personalized nutrition, on-demand food fabrication, food processing technologies, and process design in food industry in the future. This article review on food materials for 3D-printing, rheology control of food, 3D-printing system for food fabrication, 3D-printing based on molecular cuisine, 3D-printing mobile platform for customized food, and future trends in the food market.
        4,000원
        13.
        2019.01 KCI 등재 서비스 종료(열람 제한)
        LoRa LPWAN 네트워크 시스템은 비면허 무선통신을 이용하고, Mems 기반 통합센서를 통하여 Data 계측 및 기존 계측센서의 무선통신을 구현한 시스템이다. 본 시스템은 기존의 무선계측시스템 대비 장거리 통신과 기존망을 활용한 기술적/경제적인 우수성을 갖고 있으며, 유선계측시스템 대비 시스템 구축장비의 최소화로 경제성을 확보하였다. 경제성 검토항목에서 기존 유선계측 시스템 대비 약 41%의 경제적인 절감효과가 가능하다는 것을 확인하였다. 또한 유지관리 및 운영적인 측면에서도 우수하기 때문에 향후 국내에서도 많은 교량에 설치가 된다면, 교량의 유지관리 분야의 우수한 시스템으로 발전되고, 재난(지진 산사태 등), 환경(오염물 측정 및 관리 등), 플랜트 분야(화재 안전 등)에도 폭넓게 사용되길 기대한다.
        14.
        2016.08 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        For the distribution of fresh produce, the thermoelectric cooling system combined with thermo electric materials (TEM) and phase change material (PCM) was studied. The PCM used this study was produced by in-situ polymerization technology which referred microencapsulation of hydrocarbon (n-tetradecane and n-hexadecane). In this study, quality characteristics of bell peppers in thermoelectric cooling system combined with TEM and PCM were analyzed and control was placed in an EPS (expanded polystyrene) box. As a result of quality characteristics analysis, weight of bell peppers decreased and moisture content of bell peppers was 90.96~94.43% during storage. Vitamin C content of bell pepper decreased during storage and reduction ratio of control was higher than that of BPT-5 treatment(bell pepper in thermoelectric cooling system with PCM which is kept the temperature at 5℃). The result of color value, on 21 day, ΔE value of BPT-5 treatment was 5.05 while that of control was 41.8. On 21 day, total bacteria count of BPT-5 treated bell pepper shown less than that of control. In conclusion, it suggested that the thermoelectric cooling system combined with PCM improved quality of fresh produce during transportation and storage.
        15.
        2015.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The efficacy of an experimentally designed cold chain container and a currently used styrofoam container was investigated with respect to important factors affecting the quality of fresh beef during storage under different conditions. The temperature in the TEPP-1 container was maintained at 5℃ using a phase change material (PCM) during transport and delivery. During storage in the TEPP-1 container, no significant difference was observed in pH of beef, but color decreased slightly, which does not affect the desire to purchase. After storage for 7 days, the rate of VBN and TBA in the TEPP-1 container, was lower than that in the TEPP-2 container. Drip loss was lower in the TEPP-1 container (0.87%) than in the TEPP-2 container (1.78%). No significant changes were observed in microbal count until 4 days in either of the containers, but after storage for 7 days, the count increased significantly. Microbial count in TEPP-1 was 6.65 log CFU/mL and that in TEPP-2 was 7.62 log CFU/mL. The results of sensory evaluations indicated that the overall acceptability of beef after storage for 7 days was better in the TEPP-1 container than in the TEPP-2 container. The EPS container was inferior in comparison with TEPP-1 and TEPP-2. It was impossible to continue the experiment using the EPS container after 3 days. These results suggest that the experimentally designed TEPP-1 container can be used for beef transport and delivery for 7 days without significantly affecting the quality of beef.
        16.
        2015.12 서비스 종료(열람 제한)
        We isolated 105 strains of lactic acid bacteria (LAB) from home-made kimchi and breast milk-fed Korean infant feces on the basis of morphological analysis. This study aimed to compare the probiotic characteristics of selected strains of LAB including bile and acid tolerances, cholesterol assimilation and adhesion activity. Among the isolates of LAB, 54 isolates were identified as Lactobacillus plantarum (14 strains), L. brevis (12 strains), L. sakei (9 strains), L. acidophilus (3 strains), L. casei (1 strain), and L. fermentum (1 strain). Acid tolerances under artificial gastric juice, pH 2.5 for 2 h at 37°C, were significantly different among the Lactobacillus species. Lactobacillus acidophilus and L. plantarum strains exhibited high tolerance in acid and bile. Lactobacillus acidophilus strains exhibited high cholesterol assimilation activity and showed a significantly higher tolerance to 0.3% bile acid than other Lactobacillus strains (p<0.05). Based on these results, we selected the best strain, named NS1 (L. acidophilus) as a potential probiotics that can be utilized in the manufacturing of dairy foods and dietary supplements.
        17.
        2015.09 서비스 종료(열람 제한)
        Highly homogeneous and functional stem cell-derived hepatocyte-like cells (HLCs) are considered a promising option in the treatment of liver disease and the development of effective in vitro toxicity screening tool. However, the purity of cells and expression and/or activity of drug metabolizing enzymes in stem cell-derived HLCs are usually too low to be useful for clinical or in vitro applications. Here, we describe a highly optimized differentiation protocol, which produces more than 90% albumin-positive HLCs with no purification process. In addition, we show that hepatic enzyme gene expressions and activities were significantly improved by generating three-dimensional (3D) spheroidal aggregate of HLCs. The 3D differentiation method increased expressions of nuclear receptors that regulate the proper expression of key hepatic enzymes. Furthermore, a significantly increased hepatic functions such as albumin and urea secretion were observed in 3D hepatic spheroids and HLCs in the spheroid exhibited morphological and ultrastructural features of normal hepatocytes. Importantly, we show that repeated exposures to xenobiotics facilitated the functional maturation of HLC, as confirmed by increased expression of genes for drug metabolizing enzymes and transcription factors. In conclusion, the 3D culture system with repeated exposures to xenobiotics may be a new strategy for enhancing hepatic maturation of stem cell-derived HLCs as a cell source for in vitro high-throughput hepatotoxicity models.
        18.
        2015.09 서비스 종료(열람 제한)
        Hepatocyte-like cells (HLCs) derived from human pluripotent stem cells have received extensive attention in the development of drug screening and toxicity testing. However, it has been reported that stem cell-derived HLCs showed hepatic functions that were too limited to be of use in drug screening and toxicity testing, possibly due to the lack of sufficient intercellular communication under conventional two-dimensional (2D) culture conditions. Therefore, a 3D differentiation system may overcome the in vitro limitation of 2D culture to produce stem cell-derived hepatocytes with mature metabolic functions. In this study, the feasibility of using a silicone-based spherofilm, specifically designed to produce spherical cell clusters, to generate uniformly sized 3D hepatic spheroids from hESCs was investigated. Hepatic spheroids generated on the spherofilm showed more homogenous size and shape than those generated in conventional low-attachment suspension culture dishes. Results of immunohistochemical analysis showed that expression of the mature hepatic marker albumin (ALB) increased over time during the hepatic maturation process. Furthermore, the 3D culture system mimicked the in vivo 3D microenvironment. Laminin, which is an important component of hepatic ECM, was expressed in hepatic spheroids. The results of immunohistochemical analysis indicated that the 3D culture environment is capable of generating an in vivo-like microenvironment. In addition, quantitative PCR analysis showed that the mature hepatic marker ALB and cytochrome P450 (CYP) enzymes CYP3A4 and CYP3A7 were expressed at higher levels in 3D culture than in 2D culture. This indicates that the 3D culture system is suitable for hepatic maturation and that our size-controlled 3D culture conditions might accelerate hepatic function. These results suggest that 3D hepatic spheroids significantly enhance metabolic maturation of hepatocytes derived from hESCs
        19.
        2013.08 서비스 종료(열람 제한)
        MFG-E8 (Milk fat globule-epidermal growth factor VIII), also called lactadherin or BA46, SED1 is a glycoprotein found in milk and mammary epithelial cells, it is a major protein component associated with milk fat globule membrane. Previously, our study showed that expression of MFG-E8 is gradually increased with hepatic differentiation of human embryonic stem cells (hESCs). Therefore, we hypothesized that MFG-E8 would be an early cancer stem cell marker, which may predict cancer progression. Our results showed that MFG-E8 was expressed in various human cancer cell lines such as HepG2, Hep3B, and Huh7. Production and secretion of the MFG-E8 were also confirmed in the conditioned media of those three cell lines using enzyme-linked immunosorbent assay. Next, we analyzed the MFG-E8 expression in 11 clinical cases of cholangiocellular carcinoma (CC) and 33 cases of hepatocellular carcinoma (HCC) by immunohistochemistry and examined the potential correlation with β-catenin and AFP, which are known cancer markers. According to hitological criteria, the progression of HCC and CC was evaluated and classified into high, low, metastatic, and well-, moderate-, poor-differentiated, respectively. Statistical analysis indicated that incidence of both HCC and CC is significantly associated with male compared to female (P<0.05). Tumor size also has positive correlation with age (r2=08948). Our immunohistochemistry data showed that MFG-E8 was expressed both HCC and CC tissue. Interestingly, the MFG-E8 expression was significantly increased with cancer progression (P<0.05) in both cases. Additionally, b-cateninexpression was increased and its localization was changed from membrane to cytoplasm and nucleus with the degree of HCC. Likely b-catenin, AFP was also increased with the degree of HCC but it was not correlated with severalty of CC. Importantly, both AFP and b-catenin were highly co-localized with MFG-E8 in HCC. These results suggest that MFG-E8 may have important physiological roles and its expression in HCC and CC would be considered as an important prognostic factor.
        20.
        2013.08 서비스 종료(열람 제한)
        Hepatocytes derived from human embryonic stem cells (hESCs) may be a useful source for the treatment of diseased or injured liver. However, a low survival rate of grafted hepatocytes and immune rejection are still major obstacles to be overcome. We previously showed that secreted proteins (secretome) from hESC-derived hepatocytes had a potential therapeutic power in the tissue repair of injured liver without cell transplantation. The purpose of the present study was to discover key protein(s) in the secretome of hESC-derived hepatocytes using proteomic analysis and to study the tissue repair mechanism which may be operated by the secretomes. Purified indocyanine green+ hepatocytes derived from hESCs displayed multiple hepatic features, including expression of hepatic genes, production of albumin, and glycogen accumulation. The nano-LC/ESI-QTOF-MS analysis identified 365 proteins in the secretome of hESC-derived hepatocytes and the protein functional network analysis was conducted using the MetaCore TM from GeneGO. In addition, 20 tissue regeneration-related transcription factors (TFs) were extrapolated through further proteomic analysis. After intraperitoneal injection, the secretome significantly promoted the liver regeneration in a mouse model of acute liver injury. Protein functional network analysis on the secretome-induced regenerating liver confirmed 20 transcription factors (TFs) which were identified in the ICGhigh cells. The upreguation of these tissue repair-related TFs were validated by qPCR and western blotting on the regenerating liver tissues. These results demonstrate that application of the secretome analysis in combination with the protein functional network mapping would provide a reliable tool to discover new tissue-regenerating proteins as well as to expand our knowledge of the mechanisms of tissue regeneration.
        1 2