This study investigated whether the addition of porcine sperm cytosolic factor (SCF) at fusion/activation affects in vitro development of porcine parthenogenetic(PA) and nuclear transfer (NT) embryos. To determine the optimum concentration of SCF, control group of oocytes was activated with 0.3M mannitol (1.0 mM CaCl2 ․ 2H2O), other three groups of oocytes were parthenogentically activated with the fusion medium (0.1mM CaCl2 ․ 2H2O) supplemented with 100, 200 or 300 μg/ml SCF, respectively. Matured oocytes were activated with two electric pulses (DC) of 1.2 kv/cm for 30 μsec. The activated embryos were cultured in PZM-3 under 5% CO2 in air at 38.5℃ for 6 days. Oocytes activated in the presence of SCF showed a significantly higher blastocyst rate than control (p<0.05). Apoptosis rate was significantly lower in 100 μg/ml SCF group than other groups (p<0.05). Cdc2 kinase activity in control and SCF treatment group of oocytes was determined using MESACUP cdc2 kinase assay kit at 1, 5, 10, 15, 30, 45 and 60 min after activation. Cdc2 kinase activity was significantly decreased (p<0.05) in SCF group than MII oocytes or control within 5 min. For NT embryo production, reconstructed oocytes were fused in the fusion medium supplemented with 0.1 mM CaCl2 ․ 2H2O (T1), 1.0 mM CaCl2 ․ 2H2O (T2) and 0.1 mM CaCl2 ․ 2H2O with 100 μg/ml SCF (T3). Fused embryos were cultured in PZM-3 under 5% CO2 in air at 38.5℃ for 6 days. Developmental rate to blastocyst stage was significantly higher in T3 than other groups (23.0% vs. 13.5 to 15.2%) (p<0.05). Apoptosis rate was significantly lower in T3 than T1 or T2 (p<0.05). The relative abundance of Bax-α/Bcl-xl was significantly lower in in vivo or SCF group than that of control (p<0.05). Moreover, the expression of p53 and caspase3 mRNA was significantly lower in in vivo or SCF group than that of control (p<0.05). These results indicate that the addition of SCF at fusion/activation might improve in vitro development of porcine NT embryos through regulating cdc2 kinase level and expression of apoptosis related genes.
This study was performed to comprehend the developmental characteristics of cloned embryos knocked out (KO) of α-1,3-galactosyltransferase (GalT) gene. Immature oocytes were collected and cultured for 40 hrs (1-step) or 20hrs (with hormone) + 20hrs (without hormone) (2-step). The embryos transferred with miniature pig ear fibroblast cell were used as control. The reconstructed embryos were cultured in PZM-3 with 5% CO2 in air at 38.5℃ for 6 days. To determine the quality of the blstocysts, TUNEL and quantitative realtime RT-PCR were performed. The embryos were transferred to a surrogate (Landrace) at an earlier stage of the estrus cycle. The maturation rate was significantly higher in 2-step method than that of 1-step (p<0.05). The blastocyst development of GalT KO embryos was significantly lower than that of normal cloned embryos (p<0.05). The total and apoptotic cell number of GalT KO blastocysts was not different statistically from control. The relative abundance of Bax-α/Bcl-xl ratio was significantly higher in both cloned blastocysts than that of in vivo blastocysts (p<0.05). Taken together, it can be postulated that the lower developmental potential and higher expression of apoptosis related genes in GalT KO SCNT embryos might be a cause of a low efficiency of GalT KO cloned miniature pig production.
최근 미-북간 관계 개선 등으로 인하여 북핵 문제가 핵 검증단계로 진전될 것이라는 예상이 나오고 있다. 이제부터 우리 정부는 북핵 프로그램의 성공적 검증·폐기를 위해, 북한의 신고 후 전개될 상황에 대비하여 철저히 준비해야 한다. 본 논문에서는 구소련과 이라크의 대량살상무기 검증·폐기 사례로부터 두 나라의 대량살상무기 검증·폐기 과정에서 발생한 문제점을 조사·분석하여, 북핵 검증·폐기 과정 시 발생할 수 있는 문제점을 파악하고 이를 방지하기 위한 정책적 고려사항을 도출하는데 목적을 두었다.
The use of dolomite refractories has increased during the past several years in the manufacturing of clean steel during the stainless steelmaking process. However, at the same time, the use of dolomite refractories has led to what is known as the skull formation. In the present work, to understand the skull formation, the wetting characteristics of dolomite substrates by liquid Fe-19wt%Cr-10wt%Ni alloys in various oxygen partial pressures were initially investigated at 1753K using the sessile drop technique. For comparison, the wetting characteristics of alumina substrates were investigated with the same technique. It was found that the wetting index, (1+cosθ), of dolomite is approximately 40% higher compared to those of alumina. In addition, the oxygen partial pressure to generate the surface oxide, which may capture the liquid metal on the refractory surface, for dolomite is much lower than that for alumina. From this study, it was concluded that the use of dolomite is much more closely associated with the skull formation compared to the use of alumina due to the stronger wettability and the surface oxide formation at a lower oxygen partial pressure of dolomite.
We investigated on the additive effect of carbon nanotube in the sulfur electrode on the first discharge curve and cycling property of lithium/sulfur cell. The sulfur electrode with carbon nanotube had two discharge plateau potentials and the first discharge capacity about 1200 mAh/g sulfur. The addition carbon nanotube into the sulfur electrode did not affect the first discharge behavior, but improved the cycling property of lithium/sulfur cell. The optimum content of carbon nanotube was 6 wt% of sulfur electrode