This study has related to lightweight automobiles due to global warming with the reduction of fossil fuel reserves are rapidly progressing around the automobile industry.
This study has revealed the relationship for the mechanical properties via the analyzed microstructure, precipitated phase variation of the wheel hub of a commercial vehicle manufactured using molten forging technology using A356 and A357 alloys, which are high-strength Al-Si-Mg base cast aluminum alloys. Differential scanning calorimetry has performed to analyze the precipitation amount of each alloy that influences the mechanical properties of aluminum alloy. The XRD analysis has measured for the microstructure's crystal phase on A356 and A357 alloys.
In this paper has evaluated to compare the properties of the A356 alloy and the A357 alloy for the mechanical properties. The A356 alloy has confirmed that a microstructure is finer than A357 alloy, and a quantity of precipitated material is more than A357 alloy. Therefore, this study confirmed that the A356 alloy has better mechanical properties than the A357 alloy.
Porous Fe-Cu-C alloy was sintered by Pulsed Current Activated Sintering(PCAS) method within 10 min from horizontal ball mill mixture. The relative density of Fe-20wt.%Cu-0.8wt.%C alloy fabricated by PCAS method was 91%. The average hardness of the Fe-20wt.%Cu-0.8wt.%C alloy was HRB 92. The phase analysis, microstructure and composition information of the sintered alloy were investigated by using XRD, FESEM, EDAX.
Commercial carbon fiber is sized with Bisphenol A type epoxy, a thermosetting resin, to prevent fiber damage due to friction during weaving and manufacturing processes. When the thermoplastic resin is used as the base material, the interface between the carbon fiber and the thermoplastic resin is very weak because the bonding force with the thermosetting resin is not good, which greatly affects the mechanical properties of the composite material. Therefore, in order to improve the mechanical properties of the thermoplastic composite material, a process of removing the epoxy sizing layer on the surface of the carbon fiber in a furnace is required. In this process, the physical properties of the carbon fiber are changed according to the change of carbon fiber heat treatment conditions. In this paper, the study was carried out to evaluate the tensile strength required for automobile parts by extrusion and injection of thermoplastic resin based carbon fiber composites. Depending on the heat treatment temperature and time of the carbon fiber was a slightly tensile strength of the carbon composite material occurs, the tensile strength of the carbon composite material with a 6 hour heat-treated carbon fiber was measured at 550 ℃ the highest to 93 MPa. When the heat treatment holding time is more than 6 hours or the heat treatment temperature is more than 600 ℃, it may be the damage to the carbon fiber, which can cause a decrease in the tensile strength of the carbon fiber composite material.
Since electric energy is used in industry, mass production and various conveniences are provided. To provide convenience for the construction and operation of such electric energy transmission and distribution facilities, it is increasing that the demand for special purpose vehicles, that is, telescopic aerial work platform vehicles. When working active electric work using the telescopic aerial work platform vehicles, due to active electric work is inevitable, it is essential to ensure insulation performance for the safety of the operator. In this paper, we study the design and development of mechanical properties for filament winding process of glassfiber/epoxy composite, it is required to boom of telescopic aerial work platform vehicles. The glass fiber/epoxy composite filament winding process and its mechanical properties were evaluated to replace the existing ATOS80 boom. By filament winding process it was obtained the mechanical properties required for the design analysis of the glass fiber/epoxy composite boom. Using this, the insulated boom for the 30m class aerial work vehicle was designed and was manufactured by applying the filament winding process. The fabricated composite boom was evaluated by the static strength test to meet the required strength. The maximum displacement was 84mm and the crack occurred at the maximum load of 8981N. It satisfied the maximum lifting load of 4900N and 210mm the maximum displacement required for the boom.
Due to rapid industrialization and urbanization, maintenance of high voltage transmission lines in narrow alleys, complex roads, or old factory areas is required. Since the existing aerial lift vehicle is made of steel, there is a risk of electric shock. Therefore, there is a need for the development of an insulated aerial lift vehicle that can prevent electric shock accidents during electrical work. In particular, the development of an insulated aerial lift vehicle is required in a recent work environment where live line work is inevitable. The development of composite insulation boom for the vertical swing type aerial lift vehicle is studied. The insulated boom was developed by applying glass fiber-epoxy composite and filament winding process. The developed insulated boom was verified by measuring dielectric breakdown strength, surface resistance and volume resistance according to ASTM D149 and ASTM D257.
유니버설 조인트는 두 회전 축 사이에서 힘을 전달하는 구성 요소이며, 구동축과 피동축이 나란히 정렬되지 않아도 나란히 정 렬되지 않아도 동력전달이 가능하게 하며 각도 변화가 있는 전동축에서도 효율적으로 동력을 전달시키는 부품으로서 자동차의 동력전달 장치에서 많이 적용되고 있다. 차량의 경량화를 위해 고강도 알루미늄의 사용이 증가하고 있다. 본 연구에서는 알루미늄 6061 재질을 사용하여 유니버셜 조인트 샤프트를 성형하기 위해 환봉 압출, U-Shape 성형, Spline 성형 등에 대한 단조 해석 연구하였다. Bar Extrusion 성형 시 23.3Ton, U-shape 성형 시 62.2Ton, Spline 성형 시 3.2Ton, 총 Cycle Time 226sec의 성형 조건을 산출하였으며, 이를 적용하여 알루미늄 유니버셜 조인트를 제작하였다. 비틀림 시험을 통해 토크값은 평균 425.8(N・m), 비틀림 각은 평균 171.6° 의 실험값을 통해 기존 제품에 비해 단조 제품이 12.0∼14.4%의 비틀림 성능의 향상을 보였다.
Aluminum High Vacuum Die-casting process has become more prevalent in automotive manufacturing industry which require high productive rate, weldable process and heat treatment process. However, high pressure die castings usually contain gas porosity due mainly to the entrapment of air or gas in the die during the high speed injection of the molten metal into the die cavity.
Vacuum block system with disk spring was developed and vacuum chanel was optimized with numerical flow analysis. The porosity of die castings was analyzed by X-ray CT, and the effect of porosity on the mechanical properties was analyzed by hardness and tensile test. Tensile strength was improved 49.5% for 50mbar high vacuum die-casting process compare then 300mbar. And then, Surface property was analyzed with plunger velocity and fast shot set point.
In this study, Equivalent fracture strain and Fracture energy were evaluated with the small punch test(SP test) for friction stir welded(FSW) Al6061-T6 sheets. With the three rotation speeds and the three feeding rate, The nine different conditions of FSW were prepared for the SP test. The SP test specimens were manufactured and tested on the advancing side, center, and retreating side to the tool rotation direction. From the SP test data, the equivalent fracture strain and the fracture energy were analyzed. The high value of equivalent fracture strain was attained form tool rotational speed 900RPM and feeding rate 330mm/min. It is found that its characteristic is about 14% higher than the value of condition 1100RPM-330mm/min that have the lowest value. The high value of fracture energy was obtained from the tool rotation speed 900RPM and feeding rate 330mm/min. The lowest fracture energy, which from 1000RPM-300mm/min, was approximately 16% difference to the highest value.
The characteristics of CNT-Polyamide composites were analyzed, that is, tensile strength, electrical resistivity, and thermal conductivity were measured according to the align length of CNT. There have been researches on the influence of aligned CNT to improve the mechanical and thermal characteristics in different areas including absorption and shielding of electromagnetic wave, thermal distribution or absorption, and high-strength of CNT.
The aligned CNTs were synthesized by the ethylene gas with a CVD device preheated at 650℃. CNT-Polyamide composites were produced with the mixing of solution. CNT contents were controlled from 1phr to 50phr in the polyamide-ethanol solution, and blended with the 700W bar-type ultrasonic wave for 60 min.. And then CNT-polyamide were precipitated by CNT-polyamide-etnanol falling into the cold water. After dried 12 hours, CNT-polyamide composite were pressed at 150℃~180℃ with 400kgf to get the thickness of 1mm.
As the conclusions, aligned CNT bundles were dispersed by cutting of CNT to the aligned direction because of polyamide properties. Tensile strength and electrical resistivity were improved to the increase of aligned length of CNT. Thermal conductivity was little affected by the align length of CNT.
The effect of CNT diameters on properties of CNT-polyamide composites was investigated such as electrical conductivity, tensile strength and thermal conductivity. To get different diameter distributions of CNTs, several portions of Mo and Fe in Mo-Fe/MgO catalysts were synthesized by a combustion method at 600℃. And all CNTs growed at 900℃ with 3 SLM methane and 1 SLM hydrogen for 40min. Four kinds of CNTs with different diameter distributions, such as 1~3nm, 3~7nm, 7~13nm, and 10~30nm, were selected to make CNT-polyamide composites. Each composite was manufactured by a solution mixing using bar-type ultra-sonicator in the CNT portions from 1phr to 50phr. And electrical conductivity, tensile strength, and thermal conductivity were measured. Three properties of CNT-polyamide composite, manufactured with 10nm diameter, were more excellent compared to other composites, with electrical conductivity Ω at 7phr, thermal conductivity 2.4.W/mK at 40phr, tensile strength 60MPa at 30phr. CNTs with a diameter of 10nm were superior to other diameters for the multi-functional composite such as CNT-polyamide composites.