검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 221

        24.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A total of 31 bacterial strains were isolated from the Geum River basin in the Republic of Korea during our investigation of indigenous prokaryotic species. The isolated bacterial strains had high 16S rRNA gene sequence similarity (>98.7%) with those of validly published bacterial species, which have not been reported in Republic of Korea. The 31 bacterial strains were phylogenetically diverse and assigned to 4 phyla, 8 classes, 18 orders, 21 families, and 27 genera. At the genus level, the unreported species were affiliated with Kineococcus, Pedococcus, Rhodoluna, Salinibacterium, Rhodoluna, Arthrobacter, Williamsia, Nakamurella, Nocardioides of the class Actinobacteria, Patulibacter of the class Thermoleophilia, Pontibacter, Hymenobacter of the class Cytophagia, Flavobacterium of the class Flavobacteriia, Geomicrobium of the class Bacilli, Brevundimonas, Gellertiella, Rhizobium, Paracoccus, Taonella, Sphingomonas of the class Alphaproteobacteria, Burkholderia, Polaromonas, Hydrogenophaga, Chitinilyticum, Azospira, Zoogloea of the class Betaproteobacteria, and Pseudomonas of the class Gammaproteobacteria. The unreported bacterial species were further characterized by examining their morphological, cultural, physiological, and biochemical properties. The detailed descriptions of the 31 bacterial strains were provided.
        4,500원
        26.
        2022.10 구독 인증기관·개인회원 무료
        It is likely to occur internal exposure for workers in Nuclear Power Plants (NPPs) due to the intake of radionuclide. To assess the internal exposure dose the measurement of activity for remain radionuclide is necessary. The Whole Body Counters (WBCs) are commonly used for measurement of remain radionuclide activity in human body. Korea Hydro & Nuclear Power Co., Ltd. (KHNP) conduct performance test of WBCs in all NPPs for every year to confirm the performance of equipment. The performance test is conducted using unknown sources and the participants of the comparison test submit the radionuclide and activity of the unknown sources measured by WBC as a result. The performance indicator and criteria for WBC recommended in the American National Standards Institute (ANSI) N13.30 report published in 2011 are applied. The performance indicator is Root Mean Squared Error (RMSE) and criteria is 0.25 or less. The results of performance test performed in 2022 for all WBC is meet the ANSI N13.30 criteria. And the RMSE values are confirmed from 0.01 to 0.23. This means that the residual radioactivity measurement results using WBC are reliable.
        27.
        2022.10 구독 인증기관·개인회원 무료
        Plasma Arc Melter (MSO) system has been developed for the treatment and the stabilization of various kinds of hazardous and radioactive waste into the readily disposable solidification products. Molten salt oxidation system has been developed for the for the treatment of halogen- and sulfurbearing hazardous and radioactive waste without emissions of PCDD/Fs and acid gases. However, PAM system has showed some difficulty in the off-gas treatment system due to the volatilization of radionuclides and toxic metals at extremely high-temperature plasma arc melter and the emissions of acid gases. MSO system has also showed the difficulty in the treatment of spent molten salt into the disposable waste form. Present study discussed the results of organics destruction performance tests for the PAM-MSO combination system, which is proposed and developed to compensate the drawbacks of each system. The worst-case condition tests for the organics destruction were conducted at lowest temperatures and the worst-case condition tests for the retention of metals and radionuclides were conducted at highested temperatures under the range of normal operating condition. For the worst-case organic destruction test, C6H5Cl was selected as a POHCs (Principal Organic Hazardous Constituents) because of its high incinerability ranking and the property of generation of chlorine gases and PCDD/Fs when incompletely destroyed. Simulated concrete waste spiked with 1 L of C6H5Cl was treated and the emissions of 17 kinds of PCDD/Fs and other hazardous gases such as CO, THCs, NOx, SO2 and HCl/Cl2 were measured. For the worst-case condition tests for the retention of metals and radionuclides, Pb and Cs were selected because of its high volatility characteristics. The emissions of PCDD/Fs was extremely lowered than the emission limit and those of other hazardous constituents were below their emission limit. The results of performance tests on the organics destruction suggested that tested PAM-MSO combination system could readily treat PCBs-bearing spent insulation liquid, spent ion-exchange resins used for the treatment of spent decontamination liquid in the decommission process and the concreted debris bearing hazardous organic coating materials. The decontamination factor of Cs and Co were 1.4×105, 1.4×105, respectively. The emisison of Pb was 0.562 ppm. These results suggested that tested PAM-MSO system treated low-level radioactive and pb-bearing mixed waste.
        32.
        2022.05 구독 인증기관·개인회원 무료
        In 2005, groundwater contamination due to unplanned releases of radioactive materials from the US. Nuclear Power Plants (NPPs) such as Braidwood and Indian Point was confirmed. The following year, in 2006, The Nuclear Regulatory Commission (NRC) established a task force team to investigate the history of unplanned release of all NPP in the US. As a results 217 events of unplanned release including leaks and spills were identified in the US NPPs. The NRC regulates the radioactivity concentration of off-site groundwater by setting a reporting levels (RLs), and if exceeds the RLs, the licensee must report within 30 days. When the off-site groundwater is used as drinking water or non-drinking water, the RLs for tritium in groundwater are 740 Bq·L−1 or 1,110 Bq·L−1, respectively. Whereas the NRC does not set the RLs for on-site groundwater. The Nuclear Energy Institute (NEI) issued the guidance document “Industry groundwater protection initiative” NEI 07-07 in 2007. And the members of the NEI promised with regulatory body and local governments to implement groundwater monitoring/protection program according to the NEI 07-07. The document states that when the on-site groundwater is used as drinking water, the RL (740 Bq·L−1) for off-site groundwater will be applied and the licensee voluntarily reported to the NRC. And also, NPPs are setting the Investigation Level (IL) below the RP and the IL is various among the NPPs. The IL is the standard by which detailed investigations are implemented when the level (radioactivity concentration) is exceeded.
        33.
        2022.05 구독 인증기관·개인회원 무료
        There are many Systems, Structures, and Components (SSCs) in Nuclear Power Plants (NPPs). The systems include radiological waste treatment system, spent fuel pool cooling, emergency core cooling systems, etc. The structures include reactor building, piping vaults, radioactive waste storage facilities, etc. The components include valves, pumps, piping segments, etc. Radionuclides exist in some of these SSCs and unplanned release may occur when leaks or spills from them. And also Work Practice (WP) is another reason of unplanned release in NPPs. The WP is defined as an action taken by individuals during maintenance, operational or support activities, which could result in or prevent a spill or leak of a radioactive solid, liquid or gas that has a credible mechanism for contamination of groundwater. According to the results of the Electric Power Research Institute (EPRI) survey, a total of 323 unplanned release event occurred at US NPPs from 1970 to 2014. Among them, 219 events were counted to have occurred at pressurized water reactors (PWRs). In addition, it was confirmed that 41 of the 44 PWR sites (about 93%) in the US, operated at the time of the survey period, had experienced at least one unplanned release events of licensed material which impacted groundwater. This means that the US PWR sites have experienced an average of approximately 5 unplanned release event per site. The source with the most unplanned releases, including SSCs and WP, was miscellaneous systems with a percentage of about 33% (72 events). Miscellaneous systems include pipes, and it was confirmed that unplanned releases mainly occurred in pipes such as the main steam system, condensate and feedwater system, and emergency core cooling system. And the percentage was high in the order of WPs (21%, 45 events), radioactive effluents (20%, 43 events), refueling water storage (8%, 17 events), radioactive waste/material operations (7%, 16 events), spent fuel storage (5%, 12 events), unknown (4%, 9 events), and structures (2%, 5 events). The history of the unplanned release of the US NPPs will be considered when revising major SSCs in the domestic NPP groundwater monitoring program.
        34.
        2022.05 구독 인증기관·개인회원 무료
        In order to monitor the contamination of groundwater due to unplanned release of radioactive materials and the spread to off-site environments, the nuclear power plants (NPPs) conduct groundwater monitoring program (GWMP) in Korea. The GWMP should be established based on the groundwater flow model reflecting the conceptual site model (CSM) of the NPP’s site. In this study, in order to optimize the GWMP, the existing CSM and the groundwater flow model of the domestic NPPs site was updated by reflecting the latest groundwater level. As part of the CSM improvement, the hydrogeological units were subdivided more detailed from three to six through the review of hydrogeological characteristics of the NPPs site. In addition, major variables that affect groundwater flow, such as water conductivity, have been updated. The groundwater flow model was revised overall as the CSM was improved. In particular, the excavation depth of the structure and backfill area generated during the construction stage of the NPP structures was accurately reflected, and the drainage boundary conditions were realistically reflected. To verify the revised groundwater flow model, steady-state correction was performed using the groundwater level measured in April, 2021. As a results of the steady-state correction, the standard error of estimate, root mean square (RMS), normalized RMS, and the correlation coefficient were 0.32 m, 1.692 m, 5.608%, and 0.964, respectively. This means that the groundwater flow model is reasonably constructed. The CSM and groundwater flow model improved in this study will be used to optimize the monitoring location of groundwater in NPPs.
        1 2 3 4 5