Incheon is an area where complaints about odors occur frequently and there are many sources of odor emission. In this study, we used a real-time monitoring device to measure the odorous concentration near the areas where there are complaints about odors. The measurements were carried out for the three areas (G, C, S) that are located around emissions sources. G is situated in an industrial complex that has a reputation for being one of the most foul smelling regions of Incheon. A petroleum refining plant and storage facility are located around C. S is a residential area nearby an industrial site. The concentration of major designated odor substances in the G and S areas satisfied the site boundary emission standards. With regard to the characteristics of odor substances by region, although the C area region had the highest odor intensity among the three regions due to the odor intensity near the oil storage facility areas G and S were similar in terms of odor intensity. In the region of the G area, the odor intensity was slightly higher at the northern side of t he industrial complex. In terms of the odor intensity of the designated odor substances, trimethyl amine was the strongest, followed by hydrogen sulfide. The real time monitoring system was necessary to analyze the changing trends of odor substances and for the determination of major odor sources. This study was conducted to identify the material causes of odors in areas of Incheon where there are frequent complaints about major odors.
The annual number of odor complaints increased about 10 times over 14 years from 4,302 in 2005 to 40,854 in 2019, in Korea. Especially, livestock facilities account for more than 50% of the odor complaints and the swine farms account for the most odor complaints among livestock. It is therefore necessary to manage swine farms as the major odor emission source. In this study, a real-time odor monitoring system equipped with PTR-TOF-MS (proton transfer reaction time-of-flight mass spectrometric) was used to measure the odorous substances in two swine farms. Odorous substances emitted from outlets were sampled and measured at the two types of swine farms. In addition, the boundary spots were designated as measurement points. As a result, the rankings of the odorous substances in order, from highest to lowest, were ammonia, acetaldehyde, methyl mercaptan, fatty acids, etc. and the level of odor intensity was 0.8-4.4 at the outlet of the swine farms. The concentration at the boundary decreased between 1/100 ~ 1/10000 compared to the concentration emitted from outlets. Base on the results of evaluating odor activity values, Skatole and p-Cresol were estimated as major odor substances in swine farms.
In this study, actual odor conditions were investigated in restaurants, livestock facilities, and major odor discharge facilities around daily life, and an odor modeling program was performed to find ways to improve odors in odor discharge facilities. The odor modeling results of restaurants around daily life showed that the complex odor concentration of large restaurants, which are close to residential areas, is higher than the acceptable complex odor standard at the receiving point. It was judged that a plan to increase the height of the restaurant odor outlets and a plan to reduce the amount of odor discharge was necessary. As a result of modeling the life odor of livestock housing facilities, when the distance from the housing facility is far away, the actual emission concentration is much lower than the acceptable emission concentration at the receiving point. It was judged that such facilities need to be reviewed for ways to reduce the emission of odorous substances, such as sealing the livestock housing facilities or improving the livestock environment. The main odor emission business sites that show complex odor concentration as 1,000 times or greater than the outlet odor emission standard were businesses associated with surfactant preparation, compounded feed manufacturing, textile dyeing processing, and waste disposal. Due to the separation distance and high exhaust gas flow rate, it was found that odor reduction measures are necessary. In this study, it was possible to present the allowable odor emission concentration at the discharge facilities such as restaurants, livestock houses, and industrial emission facilities by performing the process of verifying the discharge concentration of the actual discharge facility and the result of living odor modeling. It is believed that suitable odor management and prevention facilities can be operated.
In this study, real-time monitoring of air quality using a real-time mobile monitoring system was conducted to identify the emission characteristics and current status of air pollutants and odorous substances that are mainly generated in domestic dyeing industrial areas and to trace the pollutant sources. The concentration of toluene in the industrial area was detected up to 926.4 ppb, which was 3 to 4 times higher than that of other industrial areas. The concentration of methylethylketone was 124.7 ppb and the concentration of dichloromethane was 129.5 ppb. Acrolein concentration was highest at E point at 521.6 ppb, methanol concentration was highest at D point at 208.8 ppb, and acetone concentration was highest at M and N points at 549.3 ppb. The most frequently detected concentration of pollutants in the air quality monitoring results in the industrial area was, in descending order, toluene > methanol > acrolein > dichloromethane > acetone, which was similar to the chemical emissions used in the industrial area by the Pollutant Release and Transfer Register data. The concentration of odorous substances measured in real time was compared with the concentration of minimum detection, and the concentration of hydrogen sulfide was about 10 times higher than the concentration of minimum detection at A point, which was judged to be the main odorous cause of A point. In the future, if the real-time mobile measurement system is constructed to automatically connect wind direction/wind speed, PRTR (Pollutant Release and Transfer Register) data and SEMS (Stack Emission Management System) data, etc., it was judged that more accurate monitoring could be performed.
In this study, the grid field olfactory odor method was supplemented to the domestic situation in the surrounding areas of a domestic science industrial complex. The actual condition of the occurrence of odor frequency in the field was then investigated over the first period of late spring to summer and the second period of autumn in 2017. The frequency of odor occurrence in the area around the science industrial complex was increased as odor discharge facilities in the nearby area were concentrated. The odor occurrence frequency of the total period was 0.09~0.28, that of the first period was 0.08~0.32, and that of the second period was 0.05~0.25. The odor occurrence frequency in summer was higher than in autumn. The frequency by which the measurement of odor occurrence by smell type was most dominant was mainly smell of chemicals, plastics, and livestock houses during the first period, and the smell of chemicals, burning gases, and plastics during the second period. And the frequency of each smell type was judged to be different according to season. The odor occurrence frequency was measured as higher than 0.15, which is the standard of Germany's odor frequency in an industrial area, and it was judged that measures for odor management in the region were necessary. Since most of the odor discharge facilities are non-continuous systems and the odor generation frequency is more important than the concentration of the minimum detection concentration, it was judged that the German grid method can reflect the odor occurrence characteristics of the odor complaints or receptors for a certain period of time compared to the domestic measurement method. In the future, it was judged that the field olfactory odor method would be able to replace the evaluation method of odor assessment in Korea with the survey method of odor assessment under actual conditions in areas where it is difficult to access the odor discharge source or the receptor where odor complaints occur.
The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.
Mass customization refers to a strategy whereby online retailers provide individually tailored products and services to their customers and has been implemented by many retailers with the Internet technology. Many luxury brands such as Bottega Venetta, Louis Vuitton, and Salvatore Ferragamo, provide customization programs to better serve their customers, from engraving their initials on a product to creating a new design of a product. However, the expansion of the customization program to the luxury brands raises potential risk, such as loosening the brand identity and inability to satisfy customers. Despite high interests in mass customization programs and popularity of luxury brands, the effect of mass customization in luxury brands has not been explored. Addressing this gap in the literature, this study attempts to investigate how customized products of luxury brands influence perceived value, satisfaction, and loyalty. In addition, this study explores how consumers’ past loyalty toward a luxury brand influences perceived value of the customization.
Hypotheses of the study were (1) Perceived value of a mass-customized product has a positive influence on satisfaction with product customization; (2) Satisfaction with product customization has a positive influence on brand loyalty; (3) The influences of perceived value of a mass-customized product on satisfaction and brand loyalty are different as a function of a customer’s past loyalty; (4) The influences of perceived value of a mass-customized product on satisfaction and brand loyalty are different as a function of a customer’s need for uniqueness.
The research strategy of this study was survey methodology and the sample of the study was online shopping consumers. Online questionnaires were collected by an online survey firm. After visiting ‘BURBERRY BESPOKE’, a mass-customization program of a luxury brand, survey participants were asked to answer the questionnaire. The instrument tapped perceived value of a mass-customized product, satisfaction with product customization, past/future brand loyalty, and need for uniqueness.
A total of 304 female online shoppers participated in the survey. The result of structural equation modeling found the positive effects of hedonic value and utilitarian value on satisfaction with product customization and the positive effect of the satisfaction on brand loyalty. The result of multiple group comparison analyses revealed the moderating roles of past loyalty and need for uniqueness in influencing the effects of perceived value of a mass-customized product on satisfaction. These findings of the study contribute to the literature in luxury brand retailing fields and suggested managerial implications to luxury brand retailers.
Mitis-salivarius sucrose bacitracin(MSB) medium is widely used in the selective isolation of mutans streptococci(MS), a designation for a group of oral cariogenic species. Recently, we have isolated three bacterial strains grown on MSB agar from human dental plaques. The three strains exhibited biochemical characteristics similar to those of the biotype IV of MS, with the exception that they manifested a positive reaction for arginine deaminase. The objective of this study was to identify and characterize these three clinical isolates. The bacteria were identified with biochemical tests as well as by 16S rDNA cloning and sequencing. In order to compare the antibiotics susceptibility of the clinical isolates with that of type strain, the minimum inhibitory concentrations of 9 antibiotics were determined using broth dilution assays. The results identified all of our three clinical isolates as Enterococcus faecalis. All E. faecalis strains were found to be susceptible to penicillin G, amoxicillin, augmentin, and vancomycin, but were resistant to ciprofloxacin, cefuroxim axetil, and clindamycin. Our findings indicate that E. faecalis is capable of growing on MSB agar, and suggest that the MSB medium be improved so that only MS should be recoverable on the medium, as originally devised for their selection.