Tenebrio molitor(T. molitor) is gaining attention as a sustainable food source with high nutrient content. Understanding their immune system, paricularly the role of Tak1 in the Imd pathway, is essential for mass breeding. This study investigates TmTak1 function in T. molitor. we investigated the immune function of TmTak1, followed by systemic infection using E. coli, S. aureus, and C. albicans. As a result, Silencing TmTak1 significantly affects expression levels of AMPs in the whole body, Fat bodies, and Integuments. These results showed lower expression levels of AMP compared to the control group during E.coli injection.
Fas-associated death domain protein (FADD) functions as an apoptotic adapter in mammals, recruiting caspases for death-inducing signaling complexes, while in lower animals, it interacts with IMD and DREDD to initiate antimicrobial responses. In this study, we examined the T. molitor FADD sequence (TmFADD) using molecular informatics methods to understand its involvement in the host's immune response against microorganisms. Knocking down TmFADD transcripts resulted in increased susceptibility of T. molitor larvae to E. coli, underscoring the significance of FADD in insect defense mechanisms and providing valuable insights into insect immunity.
장내 미생물 군집은 소화 과정, 면역 시스템, 질병 발생 등 숙주의 다양한 면에 광범위한 영향을 주는 것으로 알려져 있으며, 주요 장내 미생물 종은 숙주의 생리 기능에 핵심적인 역할을 수행한다고 발표된 바 있다. 곤충의 장내 미생물 군집에 관한 연구가 최근 활발히 이루어지고 있으며, 이들 연구는 주로 장내 미생물 군집과 기생충, 병원체 간의 상호작용, 종간의 신호 전달 네트워크, 먹이의 소화 과정 등을 중심으로 이루어지고 있다. 이러한 연구들은 대부분 Illumina MiSeq을 활용하여 16S rRNA 유전자의 V1부터 V9 영역 중 선택된 특정 부분을 대상으로 짧은 서열 정보를 대상으로 진행되었다. 그러나, 최근에는 PacBio HiFi 기술이 상용화되면서 16S rRNA의 전장 분석이 가능할 수 있게 되었다. 이번 연구는 장수말벌(Vespa mandarinia)의 해부를 통해 gut과 carcass 부분을 분리한 뒤, 각 샘플을 Illumina MiSeq과 PacBio HiFi 기술을 활용하여 미생물 군집 간의 차이점을 확인하기 위하여 수행되었다.
Haemaphysalis longicornis는 사람과 동물에게 여러 심각한 병원체를 전달하는 주요 매개체로, 한반도에 널리 분포하고 있다. H. longicornis는 Rickettsia spp., Borrelia spp., Francisella spp., Coxiella spp., 그리고 중증열성혈소판 감소증후군 바이러스 (SFTS virus) 등을 매개하는 것으로 알려져 있다. 국내에 서식하는 H. longicornis의 미생물 군집과 관련된 연구는 많이 진행되지 않은 것으로 확인되었다. 이 연구는 한반도 내 다양한 지역에서 채집된 H. longicornis의 미생물군집 다양성을 지역별, 성장 단계 및 성별에 따라 분석하였다. 2019년 6월부터 7월까지 질병관리청 권역별기후변화매개체감시거점센터 16개 지역에서 채집한 H. longicornis의 16S rRNA 유전자 V3-V4 영역을 PCR로 증폭 후 Illumina MiSeq 플랫폼으로 시퀀싱하였다. Qiime2를 활용한 미생물 다양성 분석을 통해 총 46개의 샘플에서 1,754,418개의 non-chimeric reads를 얻었으며, 평균 126개 의 operating taxonmic unit (OTU) 을 식별하여 총 1,398개의 OTU를 확인하였다. 대부분의 지역에서 Coxiella spp.가 우점종으로 나타났으며, 특히 Coxiella endosymbiont는 가장 높은 우점도를 보이며, Coxiella burnetii와 계통 발생 학적으로 유사한 것으로 확인되었다. 이 연구를 통해 분석된 결과는 각 지역의 H. longicornis 미생물군집 데이터 베이스 구축에 활용되었으며, 이를 통해 지역별 미생물군집의 특이성을 식별할 수 있게 하였다. 이는 한반도의 H. longicornis에 의한 질병 전파 연구와 이를 통한 공중보건 개선에 기여할 것으로 기대된다.
Pellino, a highly conserved E3 ubiquitin ligase, is known to mediate ubiquitination of phosphorylated Interleukin-1 receptor-related kinase (IRAK) homologs in Toll signaling pathway. To understand the immunological function of TmPellino, we screened the knockdown efficiency of TmPellino by injecting TmPellino-specific dsRNA into T. molitor larvae. Subsequently, we investigated the larval mortality and the tissue-specific expression patterns of antimicrobial peptide (AMP) genes against microbial challenges. Interestingly, the results indicate that the expression of many AMP genes was upregulated in the Malpighian tubules of TmPellino-silenced T. molitor larvae. This study may provide basic information to understand how Tmpellino regulates AMPs production in T. molitor.
Recently, it is demonstrate that the invertebrates have a immune memory, called Immune priming (IP). It was partially studied that the IP is mainly regulated by epigenetic modification. Here, to understand the IP on antimicrobial peptides (AMPs) production, we investigated larval mortality and time-dependent expression patterns of AMP genes in T. molitor larvae challenged with E. coli (two-times injection with a one-month interval). Interestingly, the results indicate that the higher and faster expression levels of most AMP genes were detected compared to the non-primed T. molitor larvae. Our results may used to improve the understanding of mechanisms of invertebrate immune memory.
Tube, an intracellular protein of the Toll-pathway, forms a complex with Pelle and MyD88, and regulates a signal transduction to activate NF-κB in Drosophila. To understand the antimicrobial function of TmTube, the induction patterns of TmTube were investigated at 3, 6, 9, 12, and 24 h-post injection of pathogens into 10th to 12th instar larvae. In addition, we investigated the effects of TmTube RNAi on larval mortality and tissue specific AMP expression in response to microbial challenge. Our results will provide a basic information to elucidate the immunological function of TmTube
Tumor necrosis factor receptor-associated factor (TRAF) is known to regulate antimicrobial peptides (AMPs) production in mammals. Here, to understand the immunological function of TmTRAF against microbial challenge, the induction patterns of TmTRAF against microbial infection was investigated by qRT-PCR in the whole-body and tissue of young larvae. In addition, the effects of TmTRAF RNAi on larval mortality and expression of 15 AMP genes in response to microbial infection were investigated. Our studies may help to understand the basic role of AMP production.
Pelle, a serine/threonine kinase, is an intracellular component of the Toll pathway and is involved in antimicrobial peptides (AMPs) production due to pathogenic infection. It is known that the Pelle phosphorylates Cactus and activates the NF-κB signaling pathway in Drosophila, but it is not studied in Tenebrio molitor. In this study we investigated the tissue-specific expression patterns of the Pelle following pathogenic infection at 3, 6, 9, 12, and 24 hours. Additionally, larval mortality and AMP expression against microbial injection were investigated in dsPelle-treated T. molitor larvae. Our results may help to understand the antimicrobial function of TmPelle.
In insects, the glutathione S-transferase is initiated in both the detoxification process and the protection of cellular membranes against oxidative damage. In this study, we identified the open reading frame (ORF) sequence of GST-iso1 and 2 from Tenebrio molitor (TmGST-iso1 and 2). To investigate the expression patterrns of TmGST-iso1 and 2 in response to herbicide, 0.06, 0.6, and 6 ㎍/㎕ of butachlor (FarmHannong, Seoul, South Korea) was challenged into T. molitor larvae, resulting that the TmGST-iso1 were highly induced at 3 and 24 h-post injection. Whereas, the highest expression of TmGST-iso2 was detected at 24 h after treatment. This study may contribute to basic information about the detoxifying activities of T. molitor.
It is well known that the JNK pathway regulates AMP production against pathogenic infection in both vertebrates and invertebrates. Tenebrio molitor hep (Tmhep) is an homolog of MAP kinase kinase in mammals. Here, we investigate the immunological function of Tmhep in responses in microbial infection using RNA interference technology. The results showed that silencing of Tmhep increased the larval mortality against microbial challenge, as well as reduced AMP production compared to the control group (dsEGFP-treated group). Conclusively, Tmhep plays an critical role in antimicrobial defense in T. molitor larvae.
This study aims to systematically investigate the insect diversity within the distinct coastal grassland and mountain habitats of East Busan, Busan Metropolitan City. The objective is to gather foundational data that will inform natural environment conservation plans and contribute to policy formulation. Employing a comprehensive collection approach, we utilized trapping nets, pitfall traps, and flying insect traps to capture a broad spectrum of insect species. The investigation identified a rich diversity of 132 species across 9 orders and 52 families. Coleoptera emerged as the most prevalent order with 13 families and 41 species, followed by Diptera with 8 families and 24 species, and Lepidoptera with 9 families and 21 species. To assess the biodiversity and structure of these communities by habitat type, we applied several biodiversity indices: the Shannon-Wiener index (H'), Margalef index (R), and Pielou evenness index. Coastal grasslands exhibited an H' of 3.153, R of 11.08, and a Pielou evenness of 0.371; coastal mountains showed an H' of 2.922, R of 13.02, and a Pielou evenness of 0.202. These metrics reveal no significant differences in diversity and evenness between the two habitats. The endangered Copris tripartitus was notably observed in coastal grasslands, alongside 20 species classified as Least Concern (LC) in the National Red List across both habitats. The comparative analysis of biodiversity and evenness levels across coastal grassland and mountain areas highlights the ecological significance of both habitats in supporting a diverse insect fauna. The detection of endangered and LC species within these areas emphasizes the critical need for ongoing monitoring and the development of effective conservation strategies tailored to protect Busan's coastal ecosystems. The findings underscore the necessity of conducting periodic surveys to monitor faunal changes and inform conservation efforts actively. By ensuring the continued protection of insect diversity, these efforts will play a pivotal role in maintaining the ecological integrity of coastal areas, thereby supporting broader environmental conservation objectives.
This study aimed to collect foundational data essential for devising a natural environment conservation plan and implementing relevant policies. It underscores the significance of understanding the current state of the natural environment. Our research concentrated on surveying the biodiversity and distribution of key natural habitats within Busan Metropolitan City, with the goal of gathering crucial data to guide the development of conservation and management strategies. The focus of our investigation was on the insect populations in Ilgwang, covering two primary habitats: mountains and wetlands. The survey, conducted from July to September 2023, utilized various collection methods, including pitfall traps, fly traps, sweeping nets, and aspirators. Our findings documented the presence of 109 species across 88 genera, 50 families, and 9 orders. Specifically, the study identified two species from the order Odonata, two from Blattodea, one from Mantodea, six from Orthoptera, eleven from Hemiptera, twenty-nine from Coleoptera, twelve from Diptera, ten from Lepidoptera, and thirty-five from Hymenoptera. Through community analysis, biodiversity indices were calculated, revealing a Shannon-Wiener index (H') of 4.07 for mountain habitats and 3.92 for wetlands. The Margalef richness index (R) displayed values of 13.92 for mountains and 14.78 for wetlands, while the Pielou evenness index indicated values of 0.96 and 0.91, respectively. Among the identified species, one was classified as endangered, and thirteen were designated as of Least Concern, according to legal protection statuses.
The study of blowfly (Diptera, Calliphoridae) biodiversity and distribution is crucial for forensic investigations involving cadavers. Abiotic and biotic factors, such as seasonality and habitat type, have significant impacts on blowfly populations. However, few forensic entomology studies have been conducted in South Korea, particularly the Gyeongsangnam-do region. To address this, in this study, an extensive year-long survey was conducted to analyze the compositions, habitat preferences, distribution, and seasonal abundance of forensically relevant blowflies in urban and forested habitats in Gyeongsangnam-do, utilizing mouse carcass-baited traps set for 48 h each month. A total of 3,478 adult blowflies were recorded, encompassing six genera and 14 species, with a noted absence of specimens during the winter months. The predominant species was Lucilia porphyrina, accounting for 37.1% of the total sample, followed by Chrysomya pinguis (27.5%), Lucilia sericata (7.6%), and Lucilia illustris (7.1%). The species composition was consistent across all surveyed regions; however, seasonal variation in species diversity was evident, with a peak in spring and decline in summer. Notably, certain species exhibited clear preferences for either urban (Calliphora calliphoroides and L. sericata) or forested habitats (L. porphyrina and Ch. pinguis). This pioneering study elucidates the diverse blowfly communities in Gyeongsangnam-do, highlighting significant seasonal and habitat-dependent variations.
To improve the quality of jujube (Zizyphus jujuba Miller var. hoonensis), which is a fruit of health functional, the effect of polyphenol preparation treatment on the fruit characteristics of two cultivars (cv. Bokjo and cv. Sangwang) of jujube was investigated. There was no difference in the height and breast diameter of jujubes tested between the polyphenol treatments and non treatment. Jujube trees treated with polyphenol preparation produced significantly more fruit than untreated in both cultivars. In cvultivar of Bokjo, the polyphenol preparation treatment increased the fruit's fresh weight and dry weight more than two times, respectively, compared to the untreated treatment. Polyphenol preparation tr eatments also changed the leaf characteristics of jujube trees. In the polyphenol-treated trees, leaf thickness tended to be thickest at the top and thinnest at the bottom. Polyphenol preparation treated jujube trees showed no difference in chlorophyll content. Moisture content was slightly higher in the untreatment than in the treatments. Visually, the polyphenol preparation treatment had a dark green color. Jujubes treated with polyphenol preparations showed differences in polyphenol content in fruits. The polyphenol content in both peel and flesh of the treatments were much higher than that of the untreatment. Reducing sugar was contained more in the peel than in the flesh and was higher in the untreatment than in the polyphenol preparation treatments. Treatment with polyphenol preparation showed differences in fruit appearance. As described above, it was found that the treatment of polyphenol preparation changed the leaves, fruit shapes and components of jujube trees. In particular, jujubes treated with polyphenol preparations are expected to contribute significantly to eco-friendly and highly functional jujube cultivation, as they appear to produce many fruits and increase the content of polyphenols and sugars.
The present study was aimed to estimate the effect of ensiling period and bacterial inoculants on chemical compositions and fermentation characteristics on rye silage harvested at delayed stage. Rye (Secale cereale L.) was harvested after 20 days of heading stage (29.4% dry matter, DM). The harvested rye forage was applied with different inoculants following: applications of distilled water (CON), Lactobacillus brevis (LBB), Leuconostoc holzapfelii (LCH), or mixture of LBB and LCH at 1:1 ratio (MIX). Each forage was ensiled into 20 L mini bucket silo (5 kg) for 50 (E50D) and 100 (E100D) days in triplicates. The E50D silages had higher in vitro digestibilities of DM (IVDMD, p<0.001) and neutral detergent fiber (IVNDFD, p=0.013), and lactate (p=0.009), and acetate (p=0.011) than those of E100D, but lower pH, lactic acid bacteria (LAB), and yeast. By inoculant application, LCH had highest IVDMD and IVNDFD (p<0.05), while MIX had highest lactate and lowest pH (p<0.05). The CON and LCH in E50D had highest LAB and yeast (p<0.05), whereas LBB in E100D had lowest (p<0.05). Therefore, this study concluded that LCH application improved the nutrient digesbility (IVDMD and IVNDFD) of lignified rye silage, and longer ensiling period for 100 days enhanced the fermentation characteristics of silage compared to ensiling for 50 days.