검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2023.11 구독 인증기관·개인회원 무료
        In nuclear power plant environments, the analysis of gamma-emitting waste materials with complex shapes can be challenging. ISOCS (In-Situ Objective Counting System) is employed to measure the gamma-emitting radionuclide concentrations. However, it is crucial to validate the accuracy of ISOCS measurements. This study aims to validate the accuracy of ISOCS measurement results for spent filters. The ISOCS measurement process begins with modeling and efficiency calculations of the target spent filters using ISOCS software. ISOCS offers the advantage of direct measurement assessment by incorporating shielding materials and collimators into the detector efficiency calculation during the modeling process, without the need for separate efficiency correction sources. To validate the accuracy of ISOCS measurement results, the measured radioactivity values were used as input data for the MicroShield computer code to derive dose rates. These dose rates were then compared to the dose rates measured on-site, confirming the reliability of ISOCS measurements. In the field, ISOCS gamma measurements and surface dose rates were measured for three Cavity filters and four RCP Seal Injection filters. The measured dose rate for the Cavity filters was around 270 Svhr, and the computed values using MicroShield showed an error of approximately 12%. Despite modeling and calculation errors in computer analysis and potential uncertainties in the measurement environment and instrument, the computed values closely matched the measured values. However, the measured dose rate for the RCP Seal Injection filters ranged 2.9~8 Svhr, which is very low and close to background levels. When compared to the results of computer analysis, an error ranging from 27% to 97% was observed. It is concluded that validating the accuracy in the low dose rate range close to background levels is challenging through a comparison of calculated and measured dose rates.
        2.
        2022.05 구독 인증기관·개인회원 무료
        Currently, in domestic nuclear power plants (NPP), the spent filters (SFs) used for the purpose of reducing and purifying the radiation of the primary cooling water system are temporarily stored in an untreated state. In order to dispose of SFs, radioactive nuclide analysis (RNA) of SFs is required to be conducted. As segmented gamma scanner (SGS) is already being used in Kori NPP, utilizing SGS for RNA of SFs would be practical and economical. In this paper, factors required to be considered to improve accuracy of SGSs for RNA of SFs are studied. The analysis of the nuclide inventory of the packaging drum for radioactive waste should be performed by the indirect drum nuclide analysis method. The material of the SFs is iron (SS304) on the outside, and paper on the inside. In addition, to meet disposal acceptance criteria, radioactive waste drums are packaged in thick grouting or shielding drums. Therefore, it is necessary to derive an appropriate correction method for high inhomogeneity and thick media. Considering these factors, evaluating radionuclides inventory plans to measure gamma rays in SGS mode. Correct the gamma ray measurement by examining the medium attenuation factor and error factors. In this way, the inventory of gamma nuclides is calculated, and the specific radioactivity of beta ray and alpha particle emitting nuclides other than gamma rays is planned to be calculated by applying scaling factors.
        4.
        2001.03 서비스 종료(열람 제한)
        Gelatin zymograms of bFF and bS showed GA110 and 62 kDa gelatinses in adsition to several minor ones. Of these, GA110 gelatinase was abolished by treating bFF or bS with bOF and interestingly, its enzymatic activity was enhanced by adding EDTA to bFF or bS before zymographic analyses. Experiments using specific inhibitors of MMPs indicated that GA110 and 62 kDa proteins were indeed gelatinases. Immunoblotting experiments using an antibody against human MMP-2 showed that both GA110 and 62 kDa were an MMP-2 isoform and active MMP-2, respectively. The results suggest that the interaction between bFF and bOF can occur at the time of fertilization.