검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        3.
        2023.11 구독 인증기관·개인회원 무료
        If radioactive plumes are released outside due to loss of containment building integrity during a nuclear power plant accident, these materials might travel with the wind, affecting both the surrounding environment and neighboring countries. In China, most nuclear power plants are located on the eastern coast. Consequently, a radioactive plume generated during an accident could negatively impact even the western part of the Korean Peninsula due to westerly winds. To detect such problems early, respond quickly, and protect residents, a system that can monitor aerial radiation under normal conditions is needed. Additionally, a detection system that can operate in real-time in an emergencies conditions is required. The current method for aerial radiation measurement takes environmental radiation data from a monitoring post 1.5 m above the ground and converts it to altitude. To measure actual aerial radiation, an expansive area is surveyed by aircraft. However, this approach is both time-consuming and expensive. Thus, to monitor radioactive plumes influenced by environmental factors like wind, we need a radiation detector that can gauge both radioactivity and directionality. In this study, we developed a radiation detector capable of assessing both the radioactivity and directionality of a radioactive plume and conducted its performance evaluation. We miniaturized the radiation detector using a CZT (Cadmium Zinc Telluride) sensor, enabling its mounting on unmanned aerial vehicles like drones. It is configured with multi-channels to measure directionality of a radioactive plumes. For performance evaluation, we positioned two-channel CZT sensors at 90 degrees and measured the energy spectrum for angle and distance using a disk-type radioactive isotope. Using this method, we compared and analyzed the directionality performance of the multi-channel radiation detector. We also confirmed its capability to discern specific radioactivity information and nuclide types in actual radioactive plumes. Our future research direction involves mounting the multi-channel radiation detector on a drone. We aim to gather actual aerial radiation data from sensors positioned in various directions.
        5.
        2022.10 구독 인증기관·개인회원 무료
        When decommissioning a nuclear power plant, the structure must be made to a disposable size. In general, the cutting process is essential when dismantling a nuclear power plant. Mainly, thermal cutting method is used to cutting metal structures. The aerosols generated during thermal cutting have a size distribution of less than 1 μm. The contaminated structures are able to generate radioactive aerosols in the decommissioning. Radioactive aerosols of 1 μm or less are deposited in the respiratory tract by workers’ breathing, causing the possibility of internal exposure. Therefore, workers must be protected from the risk of exposure to radioactive aerosols. Prior knowledge of aerosols generated during metal cutting is important to ensure worker safety. In this study, the physical and chemical properties of the aerosol were evaluated by measuring the number and mass concentrations of aerosols generated when cutting SUS304 and SA508 using the laser cutting method. High-resolution aerosol measuring equipment (HR-ELPI+, DEKATI) was used to measure the concentration of aerosols. The HR-ELPI+ is an impactor-type aerosol measuring equipment that measures the aerosol number concentration distribution in the aerodynamic diameter range of 6 nm to 10 um in real-time. And analyze the mass concentration of the aerosol according to the diameter range through the impactor. ICP-MS was used for elemental mass concentration analysis in the aerosol. Analytical elements were Fe, Cr, Ni and Mn. For the evaluation of physical and chemical properties, the MMAD of each element and CMAD were calculated in the aerosol distribution. Under the same cutting conditions, it was confirmed that the number concentration of aerosols generated from both materials had a uni-modal distribution with a peak around 0.1 um. CMAD was calculated to be 0.072 um for both SUS304 and SA508. The trend of the CMAD calculation results is the same even when the cutting conditions are changed. In the case of MMAD, it was confirmed that SUS304 had an MMAD of around 0.1 μm in size for only Fe, Cr and Mn. And SA508, Fe, Cr, Ni and Mn were all confirmed to have MMAD around 0.1 μm in size. The results of this study show that a lot of aerosols in the range of less than 1 μm, especially around 0.1 μm in size, are generated when metal is cut using laser cutting. Therefore, in order to protect the internal exposure of workers to laser metal cutting when decommissioning NPPs, it is necessary to protect from nano-sized aerosols beyond micron size.
        8.
        2016.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        경주 방사성폐기물 처분시설은 향후 80만 포장물을 처분할 계획이며 다양한 처분방식 및 관리형태를 가진 복합계가 될 것 이다. 본 논문에서는 전체부지 처분용량(80만 포장물) 처분시설의 단계별 개발에 따른 영향을 평가하기 위하여 처분시설 종 합개발계획(안)에 따른 예비안전성평가를 수행하였다. 각 시나리오에 대한 안전성평가결과 처분시설의 성능목표치를 만족 하였다. 다만, 전체처분시설의 안전성 평가결과에 중준위 방사성폐기물로 인하여 1단계 동굴 처분시설이 가장 크게 영향을 미치므로 처분시설의 안전성 향상을 위하여 처분방사능량제한 설정 등 관리방안이 필요하다. Safety Case 단계별 구축을 통 하여 중·저준위 방사성폐기물 처분시설 종합개발 과정에서 인지된 불확실성을 저감하여 안전성을 증진 시킬 수 있을 것으 로 판단된다.
        6,400원
        9.
        2010.10 구독 인증기관·개인회원 무료
        Several species of the genus Aphidius are used in biological control programs against aphid pests throughout the world and their behavior and physiology are well studied. But despite knowing the importance of sensory organs in their behavior, their antennal structure is largely unknown. In this study, the external morphology and distribution of the antennal sensilla on the antennal of both female and male adults of A. colemani were described using scanning electron microscopy (SEM). Generally, the filaform antennae of males (1,515.20±116.48 ㎛) are longer than females (1,275.06±116.42㎛). Antennae of this species is made up of scape, pedicel and flagellomeres. Male and female antennae differed in the total number of flagellomeres as 15 in males and 13 in females. Female and male antennae of A. colemani has samely seven types of sensilla. We classified sensilla placodea, Bohm bristles, 2 types of sensilla coeloconica, , 2 types of sensilla basiconica as with a tip pore and with wall pores, sensilla trichodea. In addition, the possible functions of the above sensilla types are discussed in light of previously published literature; mechanoreception(Bohm bristles, sensilla coeloconicaⅡ and sensilla trichodea) and chemoreception(sensilla coeloconicaⅠ, sensilla basiconicaⅠ,Ⅱ and sensilla placodea). Future studies on the functional morphology of the antennal sensilla of A. colemani using transmission electron microscopy (TEM) coupled with electrophysiological recordings will likely confirm the functions of the different sensilla identified in this study.
        10.
        2022.06 KCI 등재후보 서비스 종료(열람 제한)
        Probiotic strain is known to regulate the immune system by colonizing in the intestine and interact with intestinal cell receptors of lymphoid tissue. In this study, safety of Streptococcus thermophilus KCTC14471BP and silk fibroin coating effects was evaluated with respect to mucin binding abilities and immune system modulation. S. thermophilus KCTC14471BP was coated with silk fibroin by adding 1% water-soluble calcium and 0.1% silk fibroin. S. thermophilus KCTC14471BP showed the high activities of leucine arylamidase and β-galactosidase. Regarding the antibiotic resistance tests, S. thermophilus KCTC14471BP was susceptible to ampicillin, vancomycin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline, and chloramphenicol. S. thermophilus KCTC14471BP coated with silk fibroin showed the improved mucin binding ability from 16.1% to 71.3% and was confirmed to have no cytotoxicity against RAW 264.7 macrophage. S. thermophilus KCTC14471BP coated with silk fibroin showed dose-dependently significant increases in pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. These results suggested that S. thermophilus KCTC14471BP can be expected as a promising probiotic bacteria for applications to food industries such as fermentation or functional foods.