The characteristics of aqueous lithium recovery by ion exchange were studied using three commercial cation exchange resins: CMP28 (porous type strong acid exchange resin), SCR-B (gel type strong acid exchange resin) and WK60L (porous type weak acid exchange resin). CMP28 was the most effective material for aqueous lithium recovery; its performance was even enhanced by modifying the cation with K+. A comparison to Na+ and H+ form resins demonstrated that the performance enhancement is reciprocally related to the electronegativity of the cation form. Further kinetic and equilibrium isotherm studies with the K+ form CMP28 showed that aqueous lithium recovery by ion exchange was well fitted with the pseudo-second-order rate equation and the Langmuir isotherm. The maximum ion exchange capacity of aqueous lithium recovery was found to be 14.28 mg/g and the optimal pH was in the region of 4-10.
Magnetic activated carbon was prepared by adding a magnetic material to activated carbon that had been prepared from waste citrus peel in Jeju. The adsorption characteristics of an aqueous solution of the antibiotic trimethoprim (TMP) were investigated using the magnetic activated carbon, as an adsorbent, and response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box-Behnken experimental design affecting TMP adsorption with their input parameters (TMP concentration: 50~150 mg/L; pH: 4~10; temperature: 293~323 K; adsorbent dose: 0.05~0.15 g). The significance of the independent variables and their interaction was assessed by ANOVA and t-test statistical techniques. Statistical results showed that TMP concentration was the most effective parameter, compared with others. The adsorption process can be well described by the pseudo-second-order kinetic model. The experimental isotherm data followed the Langmuir isotherm model. The maximum adsorption capacities of TMP, estimated with the Langmuir isotherm model were 115.9-130.5 mg/g at 293-323 K. Also, both the thermodynamic parameters, △H and △G, have both positive values, indicating that the adsorption of TMP by the magnetic activated carbon is an endothermic reaction and proceeds via an involuntary process.
The adsorption properties of Cs+ and Cu2+ ions were evaluated by using a polysulfone scoria zeolite (PSf-SZ) composite with synthetic zeolite synthesized from Jeju volcanic rocks (scoria). In order to investigate the adsorption properties, various parameters, such as pH, contact time, reaction rate, concentration, and temperature in aqueous solutions, were evaluated by tests carried out in batch experiments. The adsorption capacities of Cs+ and Cu2+ ions increased between pH 2 but achieved equilibrium at pH 4 and above. The adsorption rate increased rapidly up to the initial 24 h, after which it plateaued ; the adsorption rate then sustained at equilibrium from 48 h. The adsorption kinetics of Cs+ and Cu2+ ions were described better by the pseudo-second-order kinetic model than the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model. The maximum adsorption capacities of Cs+ and Cu2+ ions obtained from the Langmuir model were 53.8 mg/g and 84.7 mg/g, respectively. The calculated thermodynamic parameters showed that the adsorption of Cs+ and Cu2+ ions on PSf-SZ was feasible, spontaneous and endothermic reaction.
In this study, PAN-SZ (polyacrylonitrile scoria zeolite) beads were prepared by immobilizing Na-A zeolite (SZ-A) synthesized from Jeju volcanic rocks (scoria) on the polymer PAN. FT-IR and TGA analysis results confirmed that the SZ-A was immobilized in the PAN-SZ beads. SEM images showed that the PAN-SZ beads are a spherical shape with 2 mm diameter and exhibit a porous inner structure inside the bead. The most suitable mixing ratio of PAN to SZ-A as the adsorbent for removing Sr ions was PAN/SZ-A = 0.2 g/0.3 g. The adsorption kinetic data for Cu and Sr ions were fitted well with the pseudo-second-order model. The Cu and Sr ion uptakes followed a Langmuir isotherm model and the maximum adsorption capacities at 20℃ were 84.03 mg/g and 75.19 mg/g, respectively. The amount of Sr ion adsorbed by SZ-A on the PAN-SZ beads was about 160 mg/g, which was similar to that adsorbed by SZ-A powder. Thus, the PAN-SZ beads prepared in this study are considered to be effective adsorbents for removing metal ions in aqueous solutions.
The adsorption characteristics of bisphenol A (BPA) were investigated using activated carbon based on waste citrus peel (which is abandoned in large quantities in Jeju Island), denoted as WCP-AC, and surface-modified with various P2O5 concentrations (WCP-SM-AC). Moreover, coconut-based activated carbon (which is marketed in large amounts) was surface-modified in an identical manner for comparison. The adsorption equilibrium of BPA using the activated carbons before and after surface modification was obtained at nearly 48 h. The adsorption process of BPA by activated carbons and surface-modified activated carbons was well-described by the pseudo second-order kinetic model. The experimental data in the adsorption isotherm followed the Langmuir isotherm model. With increasing P2O5 concentration (250-2,000 mg/L), the amounts of BPA adsorbed by WCP-SM-AC increased till 1,000 mg/L of P2O5; however, above 1,000 mg/L of P2O5, the same amounts adsorbed at 1,000 mg/L of P2O5 were obtained. With increasing reaction temperature, the reaction rate increased, but the adsorbed amounts decreased, especially for the activated carbon before surface modification. The amounts of BPA adsorbed by WCP-AC and WCP-SM-AC were similar in the pH range of 5-9, but significantly decreased at pH 11, and increased with increasing ionic strength due to screening and salting-out effects.
In this study, zeolite (Z-C1) was synthesized using a fusion/hydrothermal method from coal fly ash. The morphological structures of Z-C1 were confirmed to be highly crystalline with a cubic crystal structure. Exchange capacities of Ca2+ and Mg2+ ions in a single and a mixed solution reached equilibrium within 120 min. The exchange kinetics of these ions were well predicted by the pseudo-second-order rate equation. The exchange isotherms of the Ca2+ and Mg2+ ions matched the Langmuir isotherm better than the Freundlich isotherm. The maximum cation exchange capacities (qm) obtained by the Langmuir isotherm model were 2.11 mmol/g (84.52 mg/L) and 1.13 mmol/g (27.39 mg/L) for the Ca2+ and Mg2+ ions, respectively.
The purpose of this study was to minimize salt water intrusion into freshwater aquifers and limit the development of freshwater aquifers, by selecting an appropriate excavation depth of in the western coastal area of Jeju Island. The study site was mostly basaltic lava, which was mainly composed of trachy basalt. A vertical logging test was conducted to investigate the vertical distribution of the groundwater and saline groundwater interface in the study well. It was found that freshwater groundwater, saline groundwater, and freshwater groundwater are distributed from the surface to approximately 16 m, 16∼50 m, and 50∼60 m, below the ground, respectively. In order obtain saline groundwater and minimize the inflow of freshwater into this well, the drilling depth should be limited in the range of 16∼50 m from the surface. Thus, saline groundwater well development should be carried out with reference to the measurement results, which depend on the drilling depth and EC (electrical conductivity) obtained with drilling apparatus for geology and ground handling.
Agricultural soils around springwaters heavily affected by pesticide run-off and around wells considering the regional characteristics were collected at 24 stations in Jeju Island, and the physicochemical properties and adsorption and leaching characteristics of four nonionic pesticides (diazinon, fenitrothion, alachlor, and metalaxyl) were investigated. The values of the major soil factors affecting the adsorption and leaching of pesticides, namely, soil pH(H2O), organic matter content, and cation exchange capacity (CEC), were in the range of 4.64 ∼ 8.30, 0.9 ∼ 13.1% and 12.7 ∼ 31.7 meq/100 g, respectively. The Freundlich constant, KF value, which gives a measure of the adsorption capacity, decreased in the order of fenitrothion > diazinon > alachlor > metalaxyl, which was identical to their lower water solubility. Among the collected soils, the KF value was very highly correlated with organic matter content (r2 = 0.800 ∼ 0.876) and CEC (r2 = 0.715 ∼ 0.825) and showed a high correlation with clay content (r2 = 0.473 ∼ 0.575) and soil pH(H2O) (r2 = 0.401 ∼ 0.452). The leaching of pesticides in the soil column showed a reverse relationhip with their adsorption in soils, i.e., the pesticides leached more quickly for the soils with lower values of organic matter content and CEC among the soils and for the pesticides with higher water solubility.
Waste citrus peel-based activated carbon (WCAC) was prepared from waste citrus peels by activation with KOH. The removal of Cu and Pb ions from aqueous solution by the prepared WCAC was investigated in batch experiments. The solution pH significantly influenced Cu and Pb adsorption capacity and the optimum pH was 4 to 6. The adsorption of Cu and Pb ions by WCAC followed pseudo-second-order kinetics and the Langmuir isotherm model. The maximum adsorption capacity calculated by Langmuir isotherm model was 31.91 mg/g for Cu and 92.22 mg/g for Pb. As the temperature was increased from 303 K to 323 K, the ΔG˚ value decreased from –7.01 to –8.57 kJ/mol for Cu ions and from –0.87 to –2.06 kJ/mol for Pb ions. These results indicated that the adsorption of Cu and Pb by WCAC is a spontaneous process.
The adsorption characteristics of Cu ions were studied using the zeolite Na-A synthesized from Jeju volcanic rocks. The effects of various operating parameters such as initial concentration of Cu ions, contact time, solution pH, and solution temperature were investigated in batch experiments. The adsorption of Cu ions by Na-A zeolite was fitted well by pseudo-second-order kinetics and the Langmuir isotherm model. The maximum adsorption capacity determined using the Langmuir isotherm model was 152.95 mg/g. In addition, the adsorption of Cu ions by zeolite Na-A was primarily controlled by particle diffusion model in comparison with the film diffusion model. As the temperature increased from 303 K to 323 K, ΔG˚ decreased from -2.22 kJ/mol to –3.41 kJ/mol, indicating that the adsorption of Cu ions by Na-A zeolite is spontaneous process.
In this study, zeolite (Z-C2) was synthesized using a fusion/hydrothermal method on coal fly ash (FA) discharged from a thermal power plant in the Ulsan area and then analyzed via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The Z-C2 was characterized in terms of mineralogical composition and morphological analysis. The XRD results showed that its peaks had the characteristics of Na-A zeolite in the range of 2θ of 7.18~34.18. The SEM images confirmed that the Na-A zeolite crystals had a chamfered-edge crystal structure almost identical to that of the commercial zeolite. The adsorption kinetics of Cu, Co, Mn and Zn ions by Z-C2 were described better by the pseudo-second-order kinetic model more than by the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model did. The maximum adsorption capacities of Cu, Co, Mn and Zn ions obtained from the Langmuir model were in the following order : Cu (94.7 mg/g) > Co (77.7 mg/g) > Mn (57.6 mg/g) > Zn (51.1 mg/g). These adsorption capacities are regarded as excellent compared to those of commercial zeolite.
For 26 soil series distributed more than 1% among 63 soil series in Jeju Island, natural uncultivated soil samples were collected. For these soils, the chemical speciation of eight heavy metals (Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn) was examined. Further, the Plant Bioavailability (PB) and Mobility Factor (MF) of these heavy metals were evaluated using Tessier’s 5-step sequential extraction method (exchangeable, carbonate, reducible (bound to Fe/Mn oxides), oxidizable (bound to organic matter), and residual fraction). The main form present was residual fraction for Cd and Zn; residual and oxidizable fractions for Cr, Cu, Ni, and Pb; reducible fraction for Mn; and carbonate fraction for V. The average plant availability and average mobility factor were found to be V (57.37%) > Zn (12.49%) > Cd (11.76%) > Cu (11.19%) > Pb (9.37%) > Cr (9.09%) > Mn (3.13%) > Ni (2.63%), and Mn (61.04%) > V (59.94%) > Zn (31.54%) > Cd (17.65%) > Cr (15.66%) > Ni (13.89%) > Pb (13.80%) > Cu (13.53%), respectively.
In order to investigate the adsorption characteristics for Sr ion using the Na-X zeolite synthesized from coal fly ash, batch tests and response surface analyses were carried out. The adsorption kinetic data for Sr ions, using Na-X zeolite, fitted well with the pseudo-second-order model. The uptake of Sr ions followed the Langmuir isotherm model, with a maximum adsorption capacity of 196.46 mg/g. Thermodynamic studies were conducted at different reaction temperatures, with the results indicating that Sr ion adsorption by Na-X zeolite was an endothermic (ΔHo>0) and spontaneous (ΔGo<0) process. Using the response surface methodology of the Box-Behnken method, initial Sr ion concentration (X1), initial temperature (X2), and initial pH (X3) were selected as the independent variables, while the adsorption of Sr ions by Na-X zeolite was selected as the dependent variable. The experimental data fitted well with a second-order polynomial equation by multiple regression analysis. The value of the determination coefficient (R2=0.9937) and the adjusted determination coefficient (adjusted R2=0.9823) was close to 1, indicating high significance of the model. Statistical results showed the order of Sr removal based on experimental factors to be initial pH > initial concentration > temperature.
Measurements of polychlorinated biphenyls (PCBs) were taken in surface sediments inside Seogwipo and Hallim Harbors of Jeju Island, Korea, to evaluate their distribution. These harbors typically have heavy ship traffic. The samples were collected three times (in June, October, and December, 2013). PCB concentrations in sediments from Seogwipo Harbor were higher than in those from Hallim Harbor, but both levels were very low, compared with those in other parts of the world. Sedimentary PCB levels had a strong correlation with organic carbon and fine granule mud content. PCB concentration values in the examined surface sediments were much lower than Sediment Quality Guidelines (SQGs) such as ER-L (Effect Rrange-Low), TEL (Threshold Effects Level) and ISQG (Interim Sediment Quality Guideline)-low value applied in countries, such as USA, Canada, and Australia. This suggests that the PCBs did not have significant biological effects on benthic organisms in the marine environment.
The removal characteristics of 2,4-dinitrophenol (2,4-DNP) from an aqueous solution by commercial Wood-based Activated Carbon (WAC) have been studied. The effects of various experimental parameters were investigated using a batch adsorption technique. The adsorption capacity of 2,4-DNP by WAC increased with a decrease in the dosage and particle size of WAC, temperature and the initial pH of the solution, and increased with an increase in the initial concentration of the solution. The adsorption equilibrium data were best described by the Redlich-Peterson isotherm model. The maximum adsorption capacities of 2,4-DNP by WAC were 573.07 mg/g at 293 K, 500.00 mg/g at 313 K, and 476.19 mg/g at 333 K, decreasing with increasing temperature. The kinetic data were well fitted to the pseudo-second-order model, and the results of the intra-particle diffusion model suggested that the adsorption process was mainly controlled by particle diffusion. The thermodynamic analysis indicated that the adsorption of 2,4-DNP by WAC was an endothermic and spontaneous process.
This study evaluates the adsorption properties of Sr ions in an aqueous solution of the synthetic zeolite (Z-Y1) prepared using coal fly ash generated from a thermal power plant. In order to investigate the adsorption characteristics, the effects of various parameters such as the initial concentrations of Sr ion, contact time, and solution pH were investigated in a batch mode. The Langmuir and Redlich-Peterson model fitted the adsorption isotherm data better than the Freundlich model. The maximum adsorption capacity of Sr ions, as determined the Langmuir model, was 181.68 mg/g. It was found that by varying the Sr ion concentration, pH, and temperature, the pseudo-second-order kinetic model describes the adsorption kinetics of the Sr ion better than the pseudo-first-order kinetic model. The calculated thermodynamic parameters of ΔH0 and ΔG0 showed that the adsorption of Sr ions on Z-Y1 was occurred through a spontaneous and an endothermic reaction. We found that the adsorption of Sr ions by Z-Y1 was more affected by pH than by temperature and Sr ion concentration.
Zeolite (FZ) prepared using coal fly ash from an Ulsan industrial complex was immobilized with polysulfone (PS) to fabricate PS-FZ beads. The prepared PS-FZ beads were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The optimum ratio for preparing PS-FZ beads was 1 g of PS to 2 g of FZ. The removal efficiencies of Sr and Cu ions by the PS-FZ beads increased as the solution pH increased and nearly reached a plateau at pH 4. A pseudo-second-order model morel fit the adsorption kinetics of both ions by the PS-FZ beads better than a pseudo-first-order model. The Langmuir isotherm model fit the equilibrium data well. The maximum adsorption capacities calculated from the Langmuir isotherm model were 46.73 mg/g and 62.54 mg/g for the Sr and Cu ions, respectively. Additionally, the values of thermodynamic parameters such as free energy (ΔG˚), enthalpy (ΔH˚) and entropy (ΔS˚) were determined. The results implied that the prepared PS-FZ beads could be interesting an alternative material for Sr and Cu ion removal.