검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 80

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Throughfall (TF)—as a diffusive hydrological water flux—significantly affects ecohydrological and biogeochemical processes within forest ecosystems. Recent investigations have revealed the impact on TF generation processes within unmanaged coniferous plantations of under-canopy structures, particularly those laden with dead branches, as well as upper-canopy structures. However, spatiotemporal variations in TF in such plantations remain unexplored. We investigated these variations in TF in a 33-year-old unmanaged Japanese cypress (Chamaecyparis obtusa Endl.) plantation, laden with dead branches, with a high stand density (SD) of 2,500 stems ha−1. Over a two-year period (May 2017 to May 2019), we conducted weekly TF measurements using 28 manual-type TF collectors. We compared the present TF ratio and canopy water storage capacity (S) with those of previous investigations conducted on Japanese cypress plantations. Moreover, we assessed key indices contributing to spatiotemporal TF variations (canopy cover: CC and distance to the nearest stem: TFd) and potentially influential dead branch indices (number of dead branches: TFdb and vertical spacing length on a stem: TFs) to elucidate TF spatial patterns. The results showed that the TF ratio was notably lower than that in previous studies (n = 13), with SD (r = –0.92, p < 0.001) and S (r = –0.87, p < 0.001) emerging as key influential factors among other stand-structure parameters. Spatial TF patterns exhibited a decreasing trend as the gross rainfall (GR) increased. Temporal stability was not significantly associated with CC (r = 0.120, p = 0.544), TFd (r = 0.068, p = 0.731), TFdb (r = 0.211, p = 0.281), or TFs (r = 0.206, p = 0.292) for any of the TF collectors. These findings underscore the important role of GR in determining the spatial variation of TF. Collectively, our results contribute to an enhanced understanding of TF spatiotemporal heterogeneity in unmanaged Japanese cypress plantations with dead branches.
        4,600원
        2.
        2023.11 구독 인증기관·개인회원 무료
        The occurrence of shear failure in a rock mass, resulting from the sliding of joint surfaces, is primarily influenced by the surface roughness and contact area of these joints. Furthermore, since joints serve as crucial conduits for the movement of water, oil, gas, and thermal energy, the aperture and geometric complexity of these joints have a significant impact on the hydraulic properties of the rock mass. This renders them critical factors in related industries. Therefore, to gain insights into the mechanical and hydraulic behavior of a rock mass, it is essential to identify the key morphological characteristics of the joints mentioned above. In this study, we quantified the morphological characteristics of tensile fractures in granitic rocks using X-ray CT imaging. To accomplish this, we prepared a cylindrical sample of Hwang-Deung granite and conducted splitting tests to artificially create tensile fractures that closely resemble rough joint surfaces. Subsequently, we obtained 2D sliced X-ray CT images of the fractured sample with a pixel resolution of approximately 0.06 mm. By analyzing the differences in CT numbers of the rock components (e.g., fractures, voids, and rock matrix), we isolated and reconstructed the geometric information of the tensile fracture in three dimensions. Finally, we derived morphological characteristics, including surface roughness, contact area, aperture, and fracture volume, from the reconstructed fracture.
        5.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to calculate the damage of Italian ryegrass (IRG) by abnormal climate using machine learning and present the damage through the map. The IRG data collected 1,384. The climate data was collected from the Korea Meteorological Administration Meteorological data open portal.The machine learning model called xDeepFM was used to detect IRG damage. The damage was calculated using climate data from the Automated Synoptic Observing System (95 sites) by machine learning. The calculation of damage was the difference between the Dry matter yield (DMY)normal and DMYabnormal. The normal climate was set as the 40-year of climate data according to the year of IRG data (1986~2020). The level of abnormal climate was set as a multiple of the standard deviation applying the World Meteorological Organization (WMO) standard. The DMYnormal was ranged from 5,678 to 15,188 kg/ha. The damage of IRG differed according to region and level of abnormal climate with abnormal temperature, precipitation, and wind speed from -1,380 to 1,176, -3 to 2,465, and -830 to 962 kg/ha, respectively. The maximum damage was 1,176 kg/ha when the abnormal temperature was -2 level (+1.04℃), 2,465 kg/ha when the abnormal precipitation was all level and 962 kg/ha when the abnormal wind speed was -2 level (+1.60 ㎧). The damage calculated through the WMO method was presented as an map using QGIS. There was some blank area because there was no climate data. In order to calculate the damage of blank area, it would be possible to use the automatic weather system (AWS), which provides data from more sites than the automated synoptic observing system (ASOS).
        4,000원
        6.
        2023.05 구독 인증기관·개인회원 무료
        Natural uranium-contaminated soil in Korea Atomic Energy Research Institute (KAERI) was generated by decommissioning of the natural uranium conversion facility in 2010. Some of the contaminated soil was expected to be clearance level, however the disposal cost burden is increasing because it is not classified in advance. In this study, pre-classification method is presented according to the ratio of naturally occurring radioactive material (NORM) and contaminated uranium in the soil. To verify the validity of the method, the verification of the uranium radioactivity concentration estimation method through γ-ray analysis results corrected by self-absorption using MCNP6.2, and the validity of the pre-classification method according to the net peak area ratio were evaluated. Estimating concentration for 238U and 235U with γ-ray analysis using HPGe (GC3018) and MCNP6.2 was verified by 􀟙-spectrometry. The analysis results of different methods were within the deviation range. Clearance screening factors (CSFs) were derived through MCNP6.2, and net peak area ratio were calculated at 295.21 keV, 351.92 keV(214Pb), 609.31 keV, 1120.28 keV, 1764.49 keV(214Bi) of to the 92.59 keV. CSFs for contaminated soil and natural soil were compared with U/Pb ratio. CSFs and radioactivity concentrations were measured, and the deviation from the 60 minute measurement results was compared in natural soil. Pre-classification is possible using by CSFs measured for more than 5 minutes to the average concentration of 214Pb or 214Bi in contaminated soil. In this study, the pre-classification method of clearance determination in contaminated soil was evaluated, and it was relatively accurate in a shorter measurement time than the method using the concentrations. This method is expected to be used as a simple pre-classification method through additional research.
        7.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-entropy alloys (HEAs) are attracting attention because of their excellent properties and functions; however, they are relatively expensive compared with commercial alloys. Therefore, various efforts have been made to reduce the cost of raw materials. In this study, MIM is attempted using coarse equiatomic CoCrFeMnNi HEA powders. The mixing ratio (powder:binder) for HEA feedstock preparation is explored using torque rheometer. The block-shaped green parts are fabricated through a metal injection molding process using feedstock. The thermal debinding conditions are explored by thermogravimetric analysis, and solvent and thermal debinding are performed. It is densified under various sintering conditions considering the melting point of the HEA. The final product, which contains a small amount of non-FCC phase, is manufactured at a sintering temperature of 1250oC.
        4,000원
        9.
        2022.10 구독 인증기관·개인회원 무료
        In general, after the decommissioning of nuclear facilities, buildings on the site can be demolished or reused. The NSSC (Nuclear Safety and Security Commission) Notice No. 2021-11 suggests that when reusing the building on the decommissioning site, a safety assessment should be performed to confirm the effect of residual radioactivity. However, in Korea, there are currently no decommissioning experiences of nuclear power plants, and the experiences of building reuse safety assessment are also insufficient. Therefore, in this study, we analyzed the foreign cases of building reuse safety assessment after decommissioning of nuclear facilities. In this study, we investigated the Yankee Rowe nuclear power plant, Rancho Seco nuclear power plant, and Hematite fuel cycle facility. For each case, the source term, exposure scenario, exposure pathway, input parameter, and building DCGLs were analyzed. In the case of source term, each facility selected 9~26 radionuclides according to the characteristics of facilities. In the case of exposure scenario, building occupancy scenario which individuals occupy in reusing buildings was selected for all cases. Additionally, Rancho Seco also selected building renovation scenario for maintenance of building. All facilities selected 5 exposure pathways, 1) external exposure directly from a source, 2) external exposure by air submersion, 3) external exposure by deposited on the floor and wall, 4) internal exposure by inhalation, and 5) internal exposure by inadvertent ingestion. For the assessment, we used RESRAD-BUILD code for deriving building DCGLs. Input parameters are classified into building parameter, receptor parameter, and source parameter. Building parameter includes compartment height and area, receptor parameter includes indoor occupancy fraction, ingestion rate, and inhalation rate, and source parameter includes source thickness and density. The input parameters were differently selected according to the characteristics of each nuclear facility. Finally, they derived building DCGLs based on the selected source term, exposure scenario, exposure pathway, and input parameters. As a result, it was found that the maximum DCGL was 1.40×108 dpm/100 cm2, 1.30×107 dpm/100 cm2, and 1.41×109 dpm/100 cm2 for Yankee Rowe nuclear power plant, Rancho Seco nuclear power plant, and Hematite fuel cycle facility, respectively. In this study, we investigated the case of building reuse safety assessment after decommissioning of the Yankee Rowe nuclear power Plant, Rancho Seco nuclear power plant, and Hematite fuel cycle facility. Source terms, exposure scenarios, exposure pathways, input parameters, and building DCGLs were analyzed, and they were found to be different depending on the characteristics of the building. This study is expected to be used in the future building reuse safety assessment after decommissioning of domestic nuclear power plants. This work was
        10.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this study was to investigate the effect of isolated lactic acid bacteria (LAB) on the quality of high moisture rye silage. Rye forage (Secale cereale L.) was harvested at the heading stage (27.3% of dry matter (DM)) and cut into approximately 3-5 cm lengths. Then, the forage divided into 4 treatments with different inoculants: 1) No additives (CON); 2) Lactobacillus brevis strain 100D8 at a 1.2 x 105 colony-forming unit (cfu)/g of fresh forage (LBR); 3) Leuconostoc holzapfelii strain 5H4 at a 1.0 x 105 cfu/g of fresh forage (LHO); and 4) Mixture of LBR and LHO (1:1 ratio) applied at a 1.0 x 105 cfu/g of fresh forage (MIX). About 3 kg of forage from each treatment was ensiled into a 20 L mini-bucket silo in quadruplicate for 100 days. After silo opening, silage was collected for analyses of chemical compositions, in vitro nutrient digestibilities, fermentation characteristics, and microbial enumerations. The CON silage had the highest concentrations of neutral detergent fiber and acid detergent fiber (p = 0.006; p = 0.008) and a lowest in vitro DM digestibility (p < 0.001). The pH was highest in CON silage, while lowest in LBR and MIX silages (p < 0.001). The concentrations of ammonia-N, lactate, and acetate were highest in LBR silage (p = 0.008; p < 0.001; p < 0.001). Propionate and butyrate concentrations were highest in CON silage (p = 0.004; p < 0.001). The LAB and yeast counts were higher in CON and LHO silages compare to LBR and MIX silages (p < 0.001). However, the mold did not detect in all treatments. Therefore, this study could conclude that L. brevis 100D8 and Leu. holzapfelii strain 5H4 can improve the digestibility and anti-fungal activity of high moisture rye silage.
        4,000원
        13.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study was aimed to estimate the effect of ensiling period and bacterial inoculants on chemical compositions and fermentation characteristics on rye silage harvested at delayed stage. Rye (Secale cereale L.) was harvested after 20 days of heading stage (29.4% dry matter, DM). The harvested rye forage was applied with different inoculants following: applications of distilled water (CON), Lactobacillus brevis (LBB), Leuconostoc holzapfelii (LCH), or mixture of LBB and LCH at 1:1 ratio (MIX). Each forage was ensiled into 20 L mini bucket silo (5 kg) for 50 (E50D) and 100 (E100D) days in triplicates. The E50D silages had higher in vitro digestibilities of DM (IVDMD, p<0.001) and neutral detergent fiber (IVNDFD, p=0.013), and lactate (p=0.009), and acetate (p=0.011) than those of E100D, but lower pH, lactic acid bacteria (LAB), and yeast. By inoculant application, LCH had highest IVDMD and IVNDFD (p<0.05), while MIX had highest lactate and lowest pH (p<0.05). The CON and LCH in E50D had highest LAB and yeast (p<0.05), whereas LBB in E100D had lowest (p<0.05). Therefore, this study concluded that LCH application improved the nutrient digesbility (IVDMD and IVNDFD) of lignified rye silage, and longer ensiling period for 100 days enhanced the fermentation characteristics of silage compared to ensiling for 50 days.
        4,000원
        15.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to estimate the effect of different cutting lengths on fermentation characteristics and aerobic stability of whole crop rice (WCR) silage. The WCR was harvested at the yellow ripe stage (43.7%, DM), and then cut at 5 (R05), 10 (R10), and 20 cm (R20) of the theoretical length of cut with no cut WCR (R60). Each forage was ensiled into 20 L mini bucket silo (5 kg) for 150 days in quadruplicates. The cutting lengths were not affected the chemical compositions of WCR silage (p > 0.05). The pH (p < 0.001) and concentration of ammonia-N (p = 0.022) in WCR silage were increased linearly with the increase of cutting length. The concentration of lactate had quadratic effect (p = 0.007), which was highest in R20 silage (p < 0.05). The concentration of acetate was increased linearly (p = 0.014), but the concentration of butyrate was decreased linearly (p = 0.033). The lactic acid bacteria count was decreased linearly (p = 0.017), and yeast count had quadratic effect (p = 0.009), which was the highest in R20 silage (p < 0.05). Aerobic stability had strong quadratic effect (p < 0.001), which was the highest in R20 silage (p < 0.05). In conclusion, R60 silage had highest pH by a linear increase of ammonia-N concentration and led to low aerobic stability. While R20 silage had the lowest pH by high lactate concentration and led to high aerobic stability.
        4,000원
        1 2 3 4