Meta-heuristic algorithms have been developed to efficiently solve difficult problems and obtain a global optimal solution. A common feature mimics phenomenon occurring in nature and reliably improves the solution through repetition. And at the same time, the probability is used to deviate from the regional optimal solution and approach the global optimal solution. This study compares the algorithm created based on the above common points with existed SA and HS to show advantages in time and accuracy of results. Existing algorithms have problems of low accuracy, high memory, long runtime, and ignorance. In a two-variable polynomial, the existing algorithms show that the memory increases and the accuracy decrease. In order to improve the accuracy, the new algorithm increases the number of initial inputs and increases the efficiency of the search by introducing a direction using vectors. And, in order to solve the optimization problem, the results of the last experiment were learned to show the learning effect in the next experiment. The new algorithm found a solution in a short time under the experimental conditions of long iteration counts using a two-variable polynomial and showed high accuracy. And, it shows that the learning effect is effective in repeated experiments.
This study aimed to investigate whether neurotransmitter receptors in the nervous system were also expressed in oral keratinocytes. Expressions of various neurotransmitter receptor genes in immortalized mouse oral keratinocyte (IMOK) cells were examined by reverse transcriptase polymerase chain reaction. IMOK cells expressed calcitonin gene-related peptide (CGRP) receptor subunit genes Ramp1 and Ramp3 and glutamate receptor subunit genes Grina , Gria3 , Grin1 , Grin2a , and Grin2d . Moreover, IMOK cells expressed Adrb2 and Chrna5 that encode beta 2 adrenergic receptor and cholinergic receptor nicotinic alpha 5 for sympathetic and parasympathetic neurotransmitters, respectively. The expression of Bdkrb1 and Ptger4 , which encode receptors for bradykinin and prostaglandin E2 involved in inflammatory responses, was also observed at low levels. Expressions of Ramp1 and Grina in the mouse gingival epithelium were also confirmed by immunohistochemistry. When the function of neurotransmitter receptors expressed on IMOK cells was tested by intracellular calcium response, CGRP, glutamate, and cholinergic receptors did not respond to their agonists, but the bradykinin receptor responded to bradykinin. Collectively, oral keratinocytes express several neurotransmitter receptors, suggesting the potential regulation of oral epithelial homeostasis by the nervous system.
Manufactured part based on the drawing must be inspected for quality control. If no restraint note is specified on the drawing, the part should be inspected without any clamping(restraining). However if there is a restraint note, the part is non-rigid part. When inspecting non-rigid parts, there are two areas that need special attention: proper restraining of the part and determining which tolerances are checked in the retrained state. Mounting and restraining the part on the appropriate datum features is the first area. When retraining the part, the only forces that should be used are the ones described in the restraint note. The sequence for applying the restraining force specified on the drawing should be followed. The location, direction and amount of force should be in accordance with the restraint note. Once the part is restrained, the tolerances can be verified. When inspecting non-rigid part, the inspector needs to determine which dimensions and tolerances are to be checked in the retrained state. Careful reading of the restraint note will indicate if all or certain tolerances are to be checked in the restrained condition. Each feature control frame should be examined for the use of free state modifier. If a free state modifier is specified, the geometric control should be inspected with the part in the free state. When inspecting a non-rigid part on a coordinate measuring machine(CMM), fixture and clamp should be used to locate and clamp the part. The fixture will establish the proper part restraint conditions and datums. If a fixture is not used when inspecting non-rigid parts, it will be difficult or impossible repeatable measurements.
Defining and measuring non-rigid or flexible parts has been controversial in industry for many years. There are two primary areas of controversy. The first is agreeing on what exactly a non-rigid part is. The second is agreeing on how to define and measure a non-rigid part. The subject of non-rigid parts is further complicated by the brief coverage it receives in the national and international standards. This leaves each company to improvise or create its own rules for non-rigid parts. There are some who believe that Geometrical Dimensioning and Tolerancing (GD&T) should not be used on non-rigid parts. This is not true. The ASME Y14.5M standard applies to rigid parts as a default condition. However, there is no definition given for a rigid part. The term rigid part has been used in industry for so long that it has gained a definition by its general use. When most people in industry say rigid part, they are referring to a part doesn’t move (deform or flex) when a force (including gravity) is applied. How much force is relative based on the part characteristics. In reality, all parts will deform (or flex) if enough force is applied. Using this logic, all parts would be considered non-rigid. However, we all know that this is not how parts are treated in industry. Although GD&T defaults to rigid parts, it should also be used on non-rigid parts with a few special techniques. Actually 50~60% of all products designed contain parts or features on parts that are non-rigid. Therefore, we try to suggest the definitions of rigid and non-rigid parts and method to measure non-rigid parts.
One of the most performed action in daily life is standing up from sitting position. As the population of the world is aging at the high rates, people may face problems with reduced muscle strength as well as psychological changes. This can lead elderly people having difficulties with standing up from chair. Now, with the aging trend worldwide, products are being developed that can support the lives of the elderly. This study examines the distribution of hip pressure in relation to the seating positions of the standing assistance seats under development to prevent standing up accidents in older adults. The currently developing standing assistant chair designed to tilt to a maximum angle of 25 degrees. At over 25°, design considers that older people are at risk of thrown back out of that force and that the forces exerted on their arms and legs can be a significant burden to older people. By considering danger of higher than 25° for older people which is experimented in the basis of static capturing approach in previous papers, it is experimented people with age group of 20~60 on 0° to 25° tilting angle on the basis of dynamic capturing method in order to pick convenient angle of inclination. Moreover, tried to find the optimum angle by comparing the hip pressure distribution when seated at the edge of the seat and at the center of the seat with the pressure distribution sensor.
Many studies can now confirm that the body growth of youths aged 6 to 17 is increasing due to changes in dietary habits and lifestyles in Korea. If the growth of youths increase continuously, many companies that make chairs for youths must prepare anything. Youth's chairs, which are being produced at present companies, are produced by companies with multiple data. Looking at this chair, it may not fit the body of youths of the future. It is necessary to change the design dimension of the chair for that. In this research, we try to predict how the body of youths in the future will become bigger by using physical data of youths aged 6 to 17 years old. Then, using the predicted physical data, we will propose the dimensions of the design of the chair for youth.
Process capability is well known in quality control literatures. Process capability refers to the uniformity of the process. Obviously, the variability in the process is a measure of the uniformity of output. It is customary to take the 6-sigma spread in the distribution of the product quality characteristic as a measure of process capability. However there is no reference of process capability when maximum material condition is applied to datum and position tolerance in GD&T (Geometric Dimensioning and Tolerancing). If there is no material condition in datum and position tolerance, process capability can be calculated as usual. If there is a material condition in a feature control frame, bonus tolerance is permissible. Bonus tolerance is an additional tolerance for a geometric control. Whenever a geometric tolerance is applied to a feature of size, and it contains an maximum material condition (or least material condition) modifier in the tolerance portion of the feature control frame, a bonus tolerance is permissible. When the maximum material condition modifier is used in the tolerance portion of the feature control frame, it means that the stated tolerance applies when the feature of size is at its maximum material condition. When actual mating size of the feature of size departs from maximum material condition (towards least material condition), an increase in the stated tolerance-equal to the amount of the departure-is permitted. This increase, or extra tolerance, is called the bonus tolerance. Another type of bonus tolerance is datum shift. Datum shift is similar to bonus tolerance. Like bonus tolerance, datum shift is an additional tolerance that is available under certain conditions. Therefore we try to propose how to calculate process capability index of position tolerance when maximum material condition is applied to datum and position tolerance.
One of the challenges facing precision manufacturers is the increasing feature complexity of tight tolerance parts. All engineering drawings must account for the size, form, orientation, and location of all features to ensure manufacturability, measurability, and design intent. Geometric controls per ASME Y14.5 are typically applied to specify dimensional tolerances on engineering drawings and define size, form, orientation, and location of features. Many engineering drawings lack the necessary geometric dimensioning and tolerancing to allow for timely and accurate inspection and verification. Plus-minus tolerancing is typically ambiguous and requires extra time by engineering, programming, machining, and inspection functions to debate and agree on a single conclusion. Complex geometry can result in long inspection and verification times and put even the most sophisticated measurement equipment and processes to the test. In addition, design, manufacturing and quality engineers are often frustrated by communication errors over these features. However, an approach called profile tolerancing offers optimal definition of design intent by explicitly defining uniform boundaries around the physical geometry. It is an efficient and effective method for measurement and quality control. There are several advantages for product designers who use position and profile tolerancing instead of linear dimensioning. When design intent is conveyed unambiguously, manufacturers don’t have to field multiple question from suppliers as they design and build a process for manufacturing and inspection. Profile tolerancing, when it is applied correctly, provides manufacturing and inspection functions with unambiguously defined tolerancing. Those data are manufacturable and measurable. Customers can see cost and lead time reductions with parts that consistently meet the design intent. Components can function properly-eliminating costly rework, redesign, and missed market opportunities. However a supplier that is poised to embrace profile tolerancing will no doubt run into resistance from those who would prefer the way things have always been done. It is not just internal naysayers, but also suppliers that might fight the change. In addition, the investment for suppliers can be steep in terms of training, equipment, and software.
Even though cars have a good effect on modern society, traffic accidents do not. There are traffic laws that define the regulations and aim to reduce accidents from happening; nevertheless, it is hard to determine all accident causes such as road and traffic conditions, and human related factors. If a traffic accident occurs, the traffic law classifies it as ‘Negligence of Safe Driving’ for cases that are not defined by specific regulations. Meanwhile, as Korea is already growing rapidly elderly population with more than 65 years, so are the number of traffic accidents caused by this group. Therefore, we studied predictive and comparative analysis of the number of traffic accidents caused by ‘Negligence of Safe Driving’ by dividing it into two groups : All-ages and Elderly. In this paper, we used empirical monthly data from 2007 to 2015 collected by TAAS (Traffic Accident Analysis System), identified the most suitable ARIMA forecasting model by using the four steps of the Box-Jenkins method : Identification, Estimation, Diagnostics, Forecasting. The results of this study indicate that ARIMA (1, 1, 0)(0, 1, 1)12 is the most suitable forecasting model in the group of All-ages; and ARIMA (0, 1, 1)(0, 1, 1)12 is the most suitable in the group of Elderly. Then, with this fitted model, we forecasted the number of traffic accidents for 2 years of both groups. There is no large fluctuation in the group of All-ages, but the group of Elderly shows a gradual increase trend. Finally, we compared two groups in terms of the forecast, suggested a countermeasure plan to reduce traffic accidents for both groups
As manufacturing industries become globalized, product design affects every area of organization. The design sets the goals for a number of different departments, so if it fails to effectively communicate these goals, the entire organization is less efficient. In addition, To communicate clearly, the design must represent a product that meets its technical specification.GD&T (Geometric Dimensioning and Tolerancing) is one of the most important factors, which has an effect on efficiency of manufacture system, in designing products. However, most of designers in different industries are prone to ignore the importance of GD&T.To analyse the importance of GD&T compliance with international standards for design drawing, a comparison analysis of the difference between two methods, composite profile control and multiple single segment profile control, is performed on three different cases and suggests how it used to be more suitable.Composite profile tolerance is specified by a dual feature control frame that has one profile symbol specified with two lines of tolerance information. Whereas a multiple single segment profile control is when two or more single segment profile callouts are used to define the location and/or orientation and/or size and/or form of a part feature. In this study, the following results will be provided : a clear definition and an obvious difference of the tolerance zone, datums and datums sequence and minimization of tolerances.On this study, composite profile tolerance and multiple single segment profile tolerance were discussed. Next steps of research will consist on reaching more accurate results for profile control. Further research will be focused on dealing with the remaining 14 symbols of GD&T.
Optimizing energy usage for maximum efficiency is an essential goal for manufacturing plants in every industrial manufacturing sector. The generation and distribution of purifying compressed air is a large expense incurred in practically all manufacturing processes. Not only is the generation and treatment expensive equipment of compressed air, but frequent maintenance and effective operation is also required. As a plant’s compressed air system is often an integral part of the production process, it needs to be reliable, efficient, and easy to be maintain. In this paper, we study to find operating method to save energy from the adsorption dryer in the process of purifying compressed air, which is required for a clean room production site in “A” company.
The compressed air passes through a pressure vessel with two “towers” filled with a material such as activated alumina, silica gel, molecular sieve or other desiccant material. This desiccant material attracts the water from the compressed air via adsorption. As the water clings to the desiccant, the desiccant particle becomes saturated. Therefore, Adsorption dryer is an extremely significant facility which removes the moisture in the air 70℃ below the dew point temperature while using a lot of energy. Also, the energy consumption of the adsorption dryer can be varied by various operating conditions (time, pressure, temperature, etc). Therefore, based on existing operating experiments, we have searched operating condition to maximize energy saving by changing operating conditions of the facility. However, due to a short experiment period (from September to October), further research will be focused on considering seasonality.
To meet the needs of customer, manufacturing companies are diversifying product making methods. In order to adapt to changes, companies are trying to find a new manufacturing system. In this research, MTS(Make to Stock) and MTO(Make to Order) production m
Large glass furnaces to produce glass for CRT are housed in huge chambers. It is costly to maintain such a chamber in constant temperature, humidity, and (air) pressure. In this study, first, we show that the process of such a huge furnace, which requir
A new display device is required, which has concepts of flatness and slimness. FED can be one of the solutions. When we use flat panel, we can save the raw material and reduce the production time by eliminating the printing process, drying process, and wa