This research reports for the successful consolidation of Al2O3 powder with retained ultra-fine structure using MPC and sintering. Measurements in the consolidated Al2O3 bulk indicated that hardness, fracture toughenss, and breakdown voltage have been much improved relative to the conventional polycrystalline materials. Finally, optimization of the compaction parameters and sintering conditions will lead to the consolidation of Al2O3 nanopowder with higher density and even further enhanced mechanical properties.
The magnetic inductance of nanocrystalline Fe73Si16B7Nb3Cu1 and an amorphous FeSiB powder sheet has been investigated to identify RFID performance. The powder was mixed with binder and solvent and tape-casted to form films. Results show annealing significantly influenced on the inductance of the material. The surface oxidation of the particles was the main reason for the reduced inductance. The maximum inductance of Fe73Si16B7Nb3Cu1 alloy was about 88μH at 17.4 MHz, about 65% greater compared to the FeSiB alloy. The higher inductance in the nanocrystalline alloy indicates it may be used as a potential replacement of current RFID materials.
Co-Fe-Ni-B-Si-Cr based amorphous strips containing nitrogen were manufactured via melt spinning, and then devitrified by crystallization treatment at the various annealing temperatures of for up to 30 minutes in an inert gas atmosphere. The microstructures were examined by using XRD and TEM and the magnetic properties were measured by using VSM and B-H meter. Among the alloys, the amorphous ribbons of containing 121 ppm of nitrogen showed relatively high saturation magnetization. The alloy ribbons crystallized at showed that the grain size of alloy containing 121 ppm of nitrogen was about f nm, which exhibited paramagnetic behavior. The formation of nano-grain structure was attributed to the finely dispersed Fe4N particles and the solid-solutionized nitrogen atoms in the matrix. Accordingly, it can be concluded that the nano-grain structure of 5nm in size could reduce the core loss within the normally applied magnetic field of 300A/m at 10kHz.