During the decommissioning of nuclear power plant (NPP), massive amount of concrete wastes is generated, which are non-radioactive and radioactive. The concrete is a representative construction material which affords reliable structural stability, good formability, and trustful integrity. Also, its reasonable neutron absorbing property allows the various application for many components, including building construction material, bio-shield concrete, etc. Due to the noted aspects of concrete, the radiological concrete characterization is classified as an important process for development of effective strategy for concrete management, in terms of process management and financial control during the decommissioning. The characterization of bio-shield concrete is important in waste management. The understanding and characterization of activation depth is essential for the determination of waste management strategy, classification of bio-shield concrete, and process development of decommissioning. On the other hand, concrete for construction application requires the evaluation of surface contamination of them. The concrete for containment building and its structure is rarely activated, but surface contaminated. In this paper, the reactor data from representative PWR reactors in the US is studied. The experience on Yankee Rowe, Maine Yankee, and Connecticut Yankee NPPs are systematically studied. The Yankee Rowe was a 4-loop PWR of Westinghouse design with 185 MWe. The Main Yankee was a 3- loop PWR of Combustion Engineering design with 864 MWe. The Connecticut Yankee was a 4-loop Westinghouse type with 560 MWe. The characterization studies on bio-shield concrete will be discussed in this paper, including activation depth, primary nuclides, etc.
The Fukushima nuclear power plant accident, which was caused by the Great East Japan Earthquake on March 11, 2011, is of great concern to the Korean people. The scope of interest is wide and diverse, from the nuclear accident itself and the damage situation, to the current situation in Fukushima Prefecture and Japan, and to the safety of Japanese agricultural and fishery products. Concerns about nuclear safety following the Fukushima nuclear accident have a significant impact on neighboring nation’s energy policy. It has been 11 years since the Fukushima nuclear accident. In neighboring nation society, the nature and extent of damage caused by the Fukushima nuclear accident, the feasibility of follow-up measures at home and abroad, the impact on neighboring nations, and the direction of nuclear policy reflecting the lessons of the accident are hotly debated topics. Recently, the controversy has grown further as it is intertwined with Japan’s concerns about the safety and discharge of the contaminated water into the sea, and conflicts over domestic nuclear power policies. About 1.29 million tons, as of March 24, 2022, of the contaminated water are generated, which is close to the 1.37 million tons of water storage capacity. In response, the Japanese government announced on April 13, 2021, that it plans to discharge the contaminated water into the sea from 2023. This study evaluates the amount of the contaminated water that has passed through the ALPS and reviews the preparations and related facilities for ocean discharge after diluting the contaminated water. In addition, it is intended to forecast the various impacts of ocean discharge.
Numerous nuclear power plants that had been built in the late 20th century have entered the aging phase and are scheduled to be decommissioned. The decommissioning project of a commercial nuclear power plant is an array of complex processes involving the activities of site characterization, decontamination, dismantling, and site restoration. Hence, a number of essential factors, such as scheduling, work progress, and staffing, should be taken into account while the decommissioning plan is drafted and modified. Guidances on managerial and social aspects of decommissioning have been rare as compared to those of technical viewpoints. Nonetheless, the nuclear industry in the US has presented no little amount of experience on their decommissioning projects dealing with those perspectives. Thus, three sets of the case study were conducted to obtain useful lessons learned. The Maine Yankee nuclear power plant initially acquired 40 years of the operating license, it was in operation for only 25 years from 1972 until 1996. The owner group decided to shut down because of the deterioration of the profitability in 1997. The case of the Maine Yankee project enlightened the importance of the contract management and stakeholder relations. The Rancho Seco nuclear power plant is a single-unit nuclear power reactor site with 913 MWe output that commenced commercial operation in 1975. The Rancho Seco that had become the first-ever reactor shut down by a public voting introduced several innovative approaches for the decommissioning, some of which turned out to be very successful. The SONGS 1 commenced the commercial operation in 1968 and had been decided to cease its operation permanently due to a steep decline in profitability in 1992. The SONGS 1 presented worthwhile lessons in terms of project management. In this study, several lessons learned related on managerial, engineering, and regulatory/social aspects considered during the NPP decommissioning will be reviewed and discussed.
Multiple starters consisting of two Bacillus amyloliquefaciens strains (MJ1-4 and EMD17), Pichiafarinosa SY80, and Rhizopus oryzae were used for Doenjang making. Bacillus strains were selected based on their abilities to inhibit toxinogenic fungi and Bacillus cereus, fibrinolytic activity, and their ability to confer good flavor to Cheonggukjang. P. farinosa SY80 and R. oryzae, previously isolated from soy sauce, were selected because they were not inhibited by two bacilli. Doenjang was prepared by inoculation of multiple starters (A1 Doenjang). Control Doenjang was prepared by inoculation of B. subtilis KACC 16750 (Natto strain) and Aspergillus oryzae KCCM 60166 (A2 Doenjang). Another control (A3 Doenjang) was prepared by inoculation of microorganisms present in rice straw. Doenjang samples were fermented for 70 days at 20℃. pH of 3 samples decreased from the initial value of 6.4 to 5.8~6.0 and titratable acidity (TA) increased from 0.6 to 1.1~1.3. The amount of amino-type nitrogen increased during fermentation. There were slight differences in moisture, crude-protein, and crude-fat contents after 70 days. Contamination of fungi was observed only in A3 Doenjang and B. cereus was not detected from all 3 samples. A1 Doenjang showed the highest fibrinolytic activity and A2 Doenjang the second. These results indicate that Doenjang made with carefully selected starters was functionally improved and microbially more safe.
Background : Recently, ginseng (Panax ginseng C.A. Meyer.) berry has been used as a health-promoting supplements. Also, Mulberries (Morus alba L.) fruit have been used in traditional herbal medicine to treat and prevent diabetes. In this study, we measured the cytotoxicity after fermentation of the extracts in Panax Ginseng Berry and Mulberry Fruit. Methods and Results : The extracts were prepared by decoction for 3 hours in distilled water (100 g/L). The dried extract was then dissolved in phosphate-buffered saline (PBS) in preparation for use. Cell viability was examined by an MTT assay. RAW 264.7 cells were seeded at 1 × 104/mL densities in 96-well plates. Each grouping had a non-treated group as the control. The extracts were added to each well and incubated for 24 hours at 37°C and 5% CO2. The MTT solutions (5 mg/mL) were added to each well, and the cells were cultured for another 2 hours. The supernatant was then discarded, and 100 μL of dimethyl sulfoxide was added to each well. The optical density was read at 540 nm. Conclusion : Probiotics and prebiotics modulate the composition of human and domestic animal gut microbiota. The beneficial effects may result from suppression of harmful microorganisms or stimulation of organisms which contribute in a positive way to the nutrition and health of human and domestic animal. Recently, fermentation using microorganisms for the production of more effective compounds has been extensively studied. In particular, the novel pharmacological effects of a new compound generated by fermentation have been reported. Some previous studies have demonstrated that Fermented herbal medicine extract showed better bioactivity than normal herbal Plants extract when used at the same concentration.