검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        2.
        2019.06 KCI 등재 서비스 종료(열람 제한)
        Stevia rebaudiana (Asteraceae), a perennial plant, has been used as a low-calorie sweetener and is being developed as a therapeutic agent for diabetes, hypertension, myocardial diseases, and microbial infections. Despite the common use of its leaves and stem, the bioavailability of the components present in S. rebaudiana flowers, when used as ingredients of cosmetics, has not been well investigated. Herein, we investigated the antioxidative and antimelanogenic effects of an aqueous extract of S. rebaudiana flowers (Stevia-F). Total flavonoid and phenolic content in Stevia-F were determined to be 8.64 ± 0.23 ㎎ of quercetin equivalents/100 g and 631.5 ± 2.01 ㎎ of gallic acid equivalents/100 g, respectively. The IC50 values of Stevia-F for reducing power, and 2,2-diphenyl-1-picryl-hydrazyl-hydrate radical, hydrogen peroxide, and nitric oxide scavenging activities were 5541.96, 131.39, 466.34, and 10.44 ㎍/mL, respectively. Stevia-F showed inhibitory effects on the tyrosinase (IC50 = 134.74 ㎍/mL) and α-glucosidase (IC50 = 114.81 ㎍/mL) activities. No significant cytotoxicity of Stevia-F was observed in B16F10 cells, treated with up to 100 ㎍/mL of the extract for 24 and 48 h (p > 0.05). Stevia-F (1–100 ㎍/mL) suppressed α-melanocyte stimulating hormone-induced melanin production in B16F10 cells (p < 0.05) and also inhibited the cellular tyrosinase activity (p < 0.05). Overall, our results show that Stevia-F possesses potential for inhibiting tyrosinase and α-glucosidase activities and has significant antioxidant capacity. The antimelanogenic potential of Stevia-F should extend the usage of S. rebaudiana flowers in the development of skinwhitening products.
        3.
        2018.10 서비스 종료(열람 제한)
        Background : Stevia rebaudiana (Asteraceae), a perennial plant, has been used as a low caloric sweetener and therapeutic agent for diabetes, hypertension, myocardial, and antimicrobial infections. It has been commonly used leaves and stems because of their high anti-oxidative potential. The present research was carried out to explore anti-oxidative and anti-melanogenic effects of aqueous extract of Stevia rebaudiana Bertoni flos in B16F10 cells. Methods and Results : Anti-oxidant activity of Stevia flos extract (SFE) was determined by using 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging assay, nitric oxide (NO) radical scavenging method, and reducing power method. The results showed that the total phenolic content of SFE was 63.154 ± 0.0002 ㎍·QE/100㎎ and the total flavonoid was 8.64 1 ± 0.002 ㎍·GAE/100㎎. SFE exhibited a big significant effect on NO radical scavenging activity (IC50: 179.6 ㎍/㎖) comparing with standard ascorbic acid (IC50: 368.6 ㎍/㎖), and showed concentration dependent DPPH radical scavenging activity (IC50: 131.8 ㎍/㎖). Anti-melanogenic effect of SFE was also examined with B16F10 melanocytes. The amount of melanin synthesis followed by α-melanocyte stimulating hormone on B16F10 cells were significantly reduced in the presence of SFE treatment (p < 0.05). SFE also suppressed the tyrosinase activity (p < 0.05) and α-glucosidase activity (p < 0.05). Conclusion : These results provide evidence Stevia rebaudiana flos has an antioxidant potency and can be used as an anti-melanogenic agent.
        4.
        2018.09 KCI 등재 서비스 종료(열람 제한)
        Angelica tenuissima, also known as Ligusticum tenuissimum, is classified as a food-related plant and has been used as traditional medicines treating headache and anemia in Asia. However, its anti-melanogenic effect has not been reported in detail. When the extract of Angelica tenuissima (ATE) was prepared by the extraction with 70% EtOH at 80°C (final yield = 22%), the contents of decursin and Z-ligustilide in ATE were determined 0.06% and 8.43%, respectively. Total flavonoid and phenolic content in mg ATE were 5.52±0.07 ㎍ quercetin equivalents and 237.27±13.24 ㎍ gallic acid equivalents, respectively. Antioxidant capacity of ATE determined by DPPH and ABTS assay was increased with a dose dependent manner up to 1000 ㎍/㎖. The amount of melanin synthesis followed by α-melanocyte stimulating hormone on B16F10 cells were significantly reduced in the presence of ATE (250 to 1000 ㎍/㎖, p<0.05). ATE (125 to 1000 ㎍/㎖, p<0.05) suppressed the tyrosinase activity but did not show any significant effect on α-glucosidase activity at the same condition. Taken together, ATE possesses tyrosinase inhibitory potential with significant antioxidant capacities. These effects of ATE might be involved in suppression of melanin synthesis, at least, in B16F10 cells. The anti-melanogenic potential of ATE will provide an insight into developing a new skin whitening product.
        5.
        2017.06 KCI 등재 서비스 종료(열람 제한)
        EP was obtained through 20% ethanol extraction of Pueraria lobata root, and the fermented form of EP, FEP, was prepared from the EP after incubating with Lactobacillus rhamnosus vitaP1. There was no significant toxicity by EP and FEP up to 1000 ㎍/㎖ in NIH-3T3, HaCaT, and B16F10 cells. In addition to antioxidant potentials of EP and FEP determined by DPPH and ABST assays, we confirmed increase of procollagen type I and elastin synthesis by supplementation of the EP and FEP at the concentration of 50 ㎍/㎖ using ELISA kits. The protein expression levels of matrix metalloprotease (MMP)-1, -3, and -9, those are involved in the degradation of collagen or other skin matrix proteins, were remarkably suppressed while their inhibitory protein metallopeptidase inhibitor 1 (TIMP-1) was greatly up-regulated by supplementation of the EP and FEP at a concentration of 50 ㎍/㎖. Taken together, both EP and FEP supplementation could be involved in the suppression of the skin wrinkle formation through inhibiting degradation of collagen and stimulating the synthesis of collagen and elastin. The results showed that the anti-wrinkle potential of the EP and FEP will be a promising candidate for developing cosmeceutical compounds or products.