Written examination for driver’s license certification plays a critical role in promoting road safety by assessing the applicants' understanding of traffic laws and safe driving practices. However, concerns have emerged regarding structural biases in multiple-choice question (MCQ) formats, such as disproportionate answer placement and leading linguistic cues, which may allow test-takers to guess the correct answers without substantive legal knowledge. To address these problems, this paper proposes a prompt-driven evaluation framework that integrates structural item analysis with response simulations using a large language model (LLM). First, we conducted a quantitative analysis of 1,000 items to assess formal biases in the answer positions and option lengths. Subsequently, GPT-based simulations were performed under four distinct prompt conditions: (1) safety-oriented reasoning without access to legal knowledge, (2) safety-oriented reasoning with random choices for knowledge-based questions, (3) performance-oriented reasoning using all available knowledge, and (4) a random-guessing baseline model to simulate non-inferential choice behavior. The results revealed notable variations in item difficulty and prompt sensitivity, particularly when safety-related keywords influence answer selection, irrespective of legal accuracy. The proposed framework enables a pretest diagnosis of potential biases in the MCQ design and provides a practical tool for enhancing the fairness and validity of traffic law assessments. By improving the quality control of item banks, this approach contributes to the development of more reliable knowledge-based testing systems that better support public road safety.
Reinforcement learning (RL) is successfully applied to various engineering fields. RL is generally used for structural control cases to develop the control algorithms. On the other hand, a machine learning (ML) is adopted in various research to make automated structural design model for reinforced concrete (RC) beam members. In this case, ML models are developed to produce results that are as similar to those of training data as possible. The ML model developed in this way is difficult to produce better results than the training data. However, in reinforcement learning, an agent learns to make decisions by interacting with an environment. Therefore, the RL agent can find better design solution than the training data. In the structural design process (environment), the action of RL agent represent design variables of RC beam. Because the number of design variables of RC beam section is many, multi-agent DQN (Deep Q-Network) was used in this study to effectively find the optimal design solution. Among various versions of DQN, Double Q-Learning (DDQN) that not only improves accuracy in estimating the action-values but also improves the policy learned was used in this study. American Concrete Institute (318) was selected as the design codes for optimal structural design of RC beam and it was used to train the RL model without any hand-labeled dataset. Six agents of DDQN provides actions for beam with, beam depth, bottom rebar size, number of bottom rebar, top rebar size, and shear stirrup size, respectively. Six agents of DDQN were trained for 5,000 episodes and the performance of the multi-agent of DDQN was evaluated with 100 test design cases that is not used for training. Based on this study, it can be seen that the multi-agent RL algorithm can provide successfully structural design results of doubly reinforced beam.
This study examines a digital training model for the professional development of French language educators, focusing on module-based collaborative learning. It explores the theoretical foundations of teacher development, the concept and practice of digital training, and the educational implications of modular learning design. The case study analyzes a digital training program jointly operated by FEI and CNED in July 2020, which involved over 24,000 educators from 162 countries. Comprising eight modules, the program integrated digital content, real-time forums, and collaborative projects. Based on participant experiences, this study identifies key characteristics of digital training and essential factors for enhancing teacher competencies. Findings suggest that digital training fosters teachers’ digital skills and practical application while yielding positive outcomes in gamification strategies and sustainable online training models. However, challenges such as technological accessibility gaps, imbalances in program design, and cultural differences persist. To address these, the study proposes adopting a hybrid education model, strengthening practice-oriented module design, and expanding collaborative learning strategies to support an effective and sustainable training framework in the digital era.
본 연구에서는 구조물의 응답 데이터를 기반으로 고유진동수, 감쇠비 등 동특성과 풍하중 모델의 파라미터를 동시에 추정할 수 있는 스펙트럼 백색화 기반 식별 기법을 제안하고, 이를 실제 40층 고층 구조물에 적용하여 실용성과 정확도를 평가하였다. 기존 연 구에서는 본 기법을 수치 시뮬레이션 및 풍동 실험에 적용하여 그 타당성을 입증한 바 있으나, 실계측 응답 데이터를 활용한 실구조물 적용에 대해서는 검증이 이루어지지 않았다. 본 연구는 이를 확장하여, 장기간 계측된 고층 건축물의 진동 응답을 분석하고, 각 주요 모드에 대해 백색화 처리를 수행함으로써 구조물 전달함수 및 풍하중 전달함수의 파라미터를 최적화 기반으로 동시 추정하였다. 특히 백색 잡음의 누적 파워 스펙트럼 길이를 목적함수로 설정함으로써, 기존 커브 피팅 기반 기법 대비 감쇠비 추정의 정확도와 안정성을 향상시켰다. 분석 결과는 전통적인 모달 식별 기법(예: SSI)과의 비교를 통해 제안 기법의 유효성을 입증하였으며, 풍하중 모델 파라미 터까지 포함하는 통합적 구조 해석 프레임워크로서의 가능성을 제시하였다. 본 연구는 향후 구조물의 풍응답 예측, 하중 생성 모델 구 축, 구조 건전도모니터링(SHM) 및 디지털 트윈 기반 해석 등 다양한 실무 응용에 기여할 수 있을 것으로 기대된다.
Blow-up in jointed concrete pavements refers to a type of distress caused by the excessive accumulation of compressive stress within concrete slabs, primarily resulting from internal expansion and elevated environmental temperatures. This phenomenon frequently leads to slab buckling and is challenging to predict in terms of both timing and location, thereby significantly threatening the long-term structural stability of the pavement. In the present study, the pavement growth and blow-up analysis (PGBA) model was employed to quantitatively predict the timing of blow-up events in jointed concrete pavements. The model estimates the maximum compressive stress within the slab throughout the pavement’s service life using input parameters such as reliability, climatic conditions, pavement structure, material properties, and expansion joint configurations. Subsequently, the model compares the estimated stress to the threshold stress associated with blow-up to determine the likely time of occurrence. A sensitivity analysis was performed on a range of design and environmental factors, including annual maximum temperature, annual maximum precipitation, coefficient of thermal expansion, ASR, pavement thickness, geometric imperfection, and expansion joint spacing and width. The influence of each factor on the predicted blow-up occurrence time was quantitatively evaluated. The analysis demonstrated that climatic conditions, pavement structure, material properties, and expansion joint characteristics, as considered in the PGBA model, collectively govern the timing of blow-up events. These findings offer critical insights for informing the design and maintenance strategies of jointed concrete pavements.
This study proposes an improved method for updating finite element models (FEM) by incorporating the random field characteristics of concrete material properties in reinforced concrete structures. Traditional FEM often assumes homogeneous material properties, which can lead to significant discrepancies between predicted and actual dynamic responses, especially in structures where the Young’s modulus (E) of concrete varies due to factors like curing conditions, material composition, and construction methods. We employed a Gaussian random field model and a system identification (SI) technique to address this limitation to optimize sensor placement. We developed an FEM updating method that incorporates the spatial variability of concrete elasticity. This optimization allowed for a more accurate capture of dynamic properties across various structural locations, resulting in FEM updates that reflect concrete’s inherent heterogeneity. The proposed method was validated through numerical examples, comparing dynamic response accuracy in models before and after updating. Results demonstrated that error values, measured in terms of maximum value error and normalized root mean squared Error (NRMSE), were significantly reduced in the updated models compared to the pre-update model. This approach effectively addresses the limitations of homogeneous assumptions in FEM.
Our study develops a finite element analysis (FEA) model to evaluate the seismic performance of a two-story reinforced concrete (RC) school building and validates it through experiments. We developed a methodology that reflects failure modes from past experiments and validated it by comparing results at both the member (columns) and system (beam-column joints) levels. We created an FEA model for seismic-vulnerable RC moment frames using this methodology. This model incorporates bond-slip effects using three methods: Merged Nodes, Constrained Beam in Solid Penalty (CBISP), and Constrained Beam in Solid Friction (CBISF), which model the interaction between reinforcement and concrete. The approach provides a reliable tool for evaluating seismic performance and improves the accuracy of reinforced concrete frame evaluations.
Existing reinforced concrete buildings with seismically deficient columns experience reduced structural capacity and lateral resistance due to increased axial loads from green remodeling or vertical extensions aimed at reducing CO2 emissions. Traditional performance assessment methods face limitations due to their complexity. This study aims to develop a machine learning-based model for rapidly assessing seismic performance in reinforced concrete buildings using simplified structural details and seismic data. For this purpose, simple structural details, gravity loads, failure modes, and construction years were utilized as input variables for a specific reinforced concrete moment frame building. These inputs were applied to a computational model, and through nonlinear time history analysis under seismic load data with a 2% probability of exceedance in 50 years, the seismic performance evaluation results based on dynamic responses were used as output data. Using the input-output dataset constructed through this process, performance measurements for classifiers developed using various machine learning methodologies were compared, and the best-fit model (Ensemble) was proposed to predict seismic performance.
본 연구는 우즈베키스탄 자동차 산업 발전에 있어 리버스 엔지니어링 의 역할을 탐구하며, 특히 노나카와 타케우치의 지식 창출 모델(SECI Model)과의 통합에 중점을 두고 있다. 우즈베키스탄이 경쟁력 있는 국내 산업을 구축하고자 노력함에 따라, 리버스 엔지니어링은 해외 기술의 습 득, 적용, 그리고 국산화를 가능하게 했다. 본 연구는 정성적 사례 연구 접근법을 활용하여 기업 보고서, 정책 문서, 학술 문헌을 바탕으로 1996 년부터 2024년까지의 발전 상황을 분석한다. 연구 결과에 따르면 리버스 엔지니어링은 지식 이전과 혁신을 지원해 왔지만, 제한된 R&D 역량, 수 입 부품 의존도, 그리고 취약한 지식재산권 보호 등의 과제가 여전히 남 아 있다. 이러한 장벽을 극복하기 위해 본 연구는 전략적 정책, 국내 혁 신에 대한 투자 확대, 그리고 AI 기반 설계 프로세스 도입을 권고한다.
As digital transformation accelerates, platform business has become a core business model in modern society. Platform business has a network effect where the winner takes all. For this reason, it is crucial for a company's pricing policy to attract as many customers as possible in the early stages of business. Telecommunication service companies are experiencing stagnant growth due to the saturation of the smartphone market and intensifying competition in rates, but the burden of maintaining communication networks is increasing due to the rapid increase in traffic caused by domestic and foreign CSPs. This study aims to understand the dynamic characteristics of the telecommunications market by focusing on pricing policy. To this end, we analyzed how ISPs, CSPs, and consumers react to changes in pricing policy based on the prisoner's dilemma theory. The analysis of the dynamic characteristics of the market was conducted through simulation using the Agent-Based Model.
본 연구는 Van Meter & Van Horn의 정책 집행 시스템 모델을 이론 적 틀로 삼아, C대학을 사례로 중국 대학생 혁신창업교육 정책의 집행 효과에 나타나는 차이를 탐구하였다. 연구방법으로는 사례연구를 적용하 였고, 첫째, 문헌 분석을 통해 중국의 관련 정책과 C대학의 정책 집행 문서를 정리함으로써, 이론적 기반과 주요 영향 요인을 도출하였다. 둘 째, 심층 인터뷰를 하여 C대학의 정책 집행 현황을 조사하고, 정책 집행 자, 교수, 학생들의 피드백을 수집함으로써 정책 집행 과정에서 나타나는 핵심 문제를 분석하였다. 연구결과, 중국 대학생 혁신창업교육 정책의 집 행에는 정책 개념의 모호성, 자원의 부족, 다중 조직 간 협력의 어려움, 경직된 행정 체계, 낮은 사회 참여도, 집행자의 소극적 태도 등이 주요 저해 요인으로 작용하고 있음이 확인되었다. 이에 본 연구는 정책 효과 제고를 위해 정책 개념의 명확화, 재정 지원 제도의 구축, 조직 구조의 최적화, 데이터 플랫폼의 마련, 자원 통합 시스템 구축, 교사와 학생 중 심의 실행 방안 등 여섯 가지 개선 방향을 제안하였다. 이러한 연구는 Van Meter & Van Horn 모델의 적용 가능성과 정책 집행에 미치는 구 체적 영향을 실증적으로 분석함으로써, 향후 정책 수립과 집행 과정에 실질적 시사점을 제공한다.
정확한 선박 항적 예측은 선박의 충돌 회피 전략 수립과 자율운항 선박의 안전 운항에 중요한 요소이다. MMG(Maneuvering Modeling Group) 모델이나 CFD(Computational Fluid Dynamics)를 활용하여 선박 항적을 계산할 수 있지만, 계산을 위한 선박의 정확한 계 수등을 확보하는 것은 현실적으로 어렵다. 이에 대한 대안으로, LSTM(Long Short-Term Memory)과 같은 인공지능을 활용한 항적 예측 연 구가 진행되고 있다. 그러나 LSTM 단독으로는 선박의 복잡한 비선형적 움직임을 완벽히 예측하는데 한계가 있다. 예측 정확도를 향상 시키기 위해 본 연구에서는 STL-CNN-LSTM 하이브리드 모델을 제안한다. 이 모델은 STL (Seasonal and Trend decomposition using Loess)을 이용한 데이터를 분해하고, CNN(Convolutional Neural Network)을 활용한 데이터의 특징 추출, 그리고 LSTM을 통한 학습이 이뤄진다. 이 연구는 CNN-LSTM에 비해 얼마나 더 높은 항적 예측도를 보여주는지 비교 분석한다. 분석 결과, STL-CNN-LSTM 모델은 CNN-LSTM보 다 우수한 예측 성능을 보이며, 예측 오차는 1~5미터 범위 내에 있는 것으로 나타났다. 이러한 연구 결과는 정밀한 충돌 회피 전략 개 발에 기여할 수 있으며, 향후 연구에서는 실무 적용을 위한 충돌회피 모델의 설계 고도화 연구에 적용될 것이다.