검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 257

        201.
        2015.07 서비스 종료(열람 제한)
        Sessile organism, plants constitutively challenged with pathogens have been developed various strategies for protection, such as preformed and inducible defense mechanisms. Receptor-like Proteins(RLPs) play critical roles in defense response as well as in plant development and growth. The domain structure of RLPs consists of extracellular leucine–rich repeats, a transmembrane domain, and a short cytoplasmic tail. Here, we identified putative 170 RLP genes from pepper genome using in-house bioinformatics pipeline. The distribution of RLPs on pepper pseudomolecule showed uneven spread and a number of RLPs were physically clustered by tandem array in the specific chromosome. Motifs analysis of pepper RLPs showed conserved LRR sequences (LxxLxxLDLxxNxxxGxIP). To understand further functional and evolutionary characteristics, evolutional relationship and gene profiling analysis are on progress.
        202.
        2014.09 서비스 종료(열람 제한)
        Estrogen is an important regulator of reproduction in both male and female. The two forms of estrogen receptor (ER) are known, ERα and ERβ. To understand the role of ERα in the testis, we investigated the expression of ERα in the mouse Leydig cells during postnatal development and the effects of estrogen on steroidogenesis and proliferation in progenitor Leydig cells (PLCs). In the testis, ERα mRNA and protein levels were markedly increased from postnatal day (PND) 1 to 14 and decreased thereafter until PND 56. During postnatal development ERα immunoreactivity was strong in the nucleus of Leydig cells at PND 14 when PLCs were abundant in the interstitium and low in the mature adult Leydig cells (ALCs). In fetal Leydig cells (FLCs), ERα immunoreactivity was negligible at birth and became increased at PND 14. This suggests an important role of ERα in Leydig cells during neonatal period. In isolated PLCs, 17β-estradiol (E2) and ERα-selective agonist, PPT suppressed the hCG-induced progesterone production and steroidogenic pathway genes expression. The hCG-induced PLCs proliferation was significantly inhibited by E2 and PPT. In conclusion, estrogen - ERα signaling may negatively regulate functional differentiation and proliferation of PLCs.
        203.
        2014.09 서비스 종료(열람 제한)
        단백질의 기능을 다양화하기 위한 하나의 방법으로 전사 후 단백질 변형(post-translational modification)을 통해 단백질 활성이 조절된다. 또한, 최근 단백질의 sumoylation에 의한 활성 변화와 조절기전에 관해 많은 연구가 진행되어 여러 종류의 small ubiquitin-like protein(Ubl)이 밝혀졌다. 그 중 SUMO-1(small ubiquitin-related modifier 1)에 의한 sumoylation을 통해 androgen receptor(AR)가 modification 되어진다. Sumoylation은 protein을 targeting하고, 단백질을 안정화시키며, 전사를 활성화시키는 다양한 역할을 가지고 있다. 본 연구에서는 부정소에서 sumo-1 발현에 미치는 남성호르몬의 기능을 규명하고자 하였다. 본 연구에서는 생후 8주인 수컷 생쥐를 이용하여 정소가 제거 되지 않은 생쥐(Sham)와 정소를 제거한 생쥐(ORX), 정소를 제거한 후 1주간 Dihydrotestosterone(DHT)를 subcutaneous에 주사한 생쥐(ORX+DHT) 등으로부터 적출한 부정소를 이용하였다. 면역조직화학법을 이용하여 부정소 내 SUMO-1의 발현 부위와 정량적 RT-PCR를 통해 SUMO-1 mRNA 발현을 두부, 체부, 미부로 나누어 분석하였다. 또한, Western blot을 이용하여 부정소 내 sumo-1에 의한 단백질 패턴을 확인하였다. 생쥐 부정소에서 SUMO-1 immunoreactivity는 Sham군보다 ORX군에서 강하게 발현되었으며, ORX+DHT군에서 다시 감소하는 것으로 확인되었다. 특히, ORX군에서 두부보다는 체부와 미부에서 강하게 발현된 것을 확인하였다. 정량적 RT-PCR에 의하면 두부와 체부 부정소에서는 Sham군에 비해 ORX군에서 SUMO-1 mRNA 발현이 유의적으로 감소하였다. 하지만 미부에서는 변화가 나타나지 않았다. 또한, sham군보다 ORX+DHT군 미부에서 SUMO-1 mRNA 발현 유의성이 증가하였지만 두부와 체부에서는 변화를 나타내지 않았다. ORX+DHT군에서 SUMO-1 mRNA 발현이 ORX군에 비해 모든 부위에서 유의적으로 증가하였다. Western blot에서는 각 부정소에서 단백질 발현 패턴이 다른 것을 확인하였고 특히 sham군에서 발현된 단백질은 ORX군에서는 발현되지 않았으며 ORX군에서 발현된 단백질은 sham군에서는 발현되지 않았다. 부정소에서 sumo-1 전사와 단백질량은 음의 상관성을 보였으며 sumo-1의 전사는 두부, 체부가 유사하고 미부는 이들과 다른 양상을 보였다. 각 부정소에서 단백질 발현 패턴이 상이한 것을 알 수 있었고 남성호르몬에 의해서 ORX군에서 감소하고 증가한 단백질들을 전반적으로 회복시키는 것으로 사료된다. ORX군 상피조직의 핵에서 sumo-1 증가는 AR의 감소를 수반하는 것으로 보아 상피세포에서 AR등과 같은 전사인자의 분해를 촉진하는 것으로 추측된다. 반대로 AR이 감소한 경우 남성호르몬에 의한 AR의 전사활성 감수성을 증가시키기 위한 기작으로 추측할 수 있는 것으로 사료된다.
        204.
        2014.09 서비스 종료(열람 제한)
        Amnionless (AMN) is a plasma membrane protein that binds to cubilin and megalin in various epithelia and mediates endocytosis of extracellular ligands. This function has been studied in the kidney where it plays a key role in vitamin B12 and vitamin D homeostasis. Present study aimed to elucidate developmental pattern of expression of AMN during the peri-implantation period in mouse embryos. In an effort to understand functional role of AMN in the histiotropic nutrition in blastocyst, endocytotic function of AMN for apoplipoprotein was examined in blastocyst. Eight-week-old female mice were superovulated by intraperitoneal injection of 5 IU PMSG and 5 IU hCG 48h later. To obtain embryos, females were mated with males. Mouse embryos were collected at 12, 48, 56, 65, 72 and 96 h post-hCG by flushing oviducts and uterus, and we also obtained gestation day 6.5, 7.5 and 8.5 embryos in uterus. All samples were subjected to quantitative RT-PCR, whole-mount immunofluorescence and immunohistochemistry analysis. To analyze endocytotic function of AMN, we examined uptake experiment of FICT labeled apolipoprotein A-I (ApoA-I-FITC) following functional blocking of AMN in blastocysts. AMN and cubilin mRNA was expressed in all developmental stages of mouse embryos. Megalin was the first detected at morula stage. AMN protein was expressed in trophectoderm (TE) and inner cell mass (ICM). AMN and cubilin were expressed in visceral endoderm of GD 6.5 and 7.5 embryos and visceral yolk sec of GD 8.5 embryos. In normal IgG treated embryos, ApoA-I-FITC was detected in intracellular vesicles of TE and ICM. However, in the presence of anti-AMN antibody, ApoA-I-FITC was weakly detected in apical surface of plasma membrane of TE. To date, AMN has been believed to be expressed in visceral endoderm of post implantation embryos. Our results demonstrated that AMN is the important molecular partner of cubilin and megalin in the preimplantation embryos and that AMN mediates endocytosis of apoplipoprotein, which may play a crucial role in embryonic development and normal growth via supporting histiotropic nutrition during peri-implantation period.
        205.
        2014.06 KCI 등재 서비스 종료(열람 제한)
        X선을 이용한 chest radiography는 일반적으로 180 cm의 SID에서 실시되고 있다. digital chest radiography에서 AEC를 적용하고 120 kVp, 320 mA에서 SID를 180 cm부터 340 cm까지 20 cm 단위로 증가시켜 가며 영상의 질과 환자선량의 관계를 알아보았다. chest phantom 영상의 정성적인 영상평가를 위해 VGA를, 정량적인 평가를 위해 SNR을 분석하였다. 선량은 ESAK로 측정하고 effective dose는 PCXMC를 이용하였다. 연구결과 일반적으로 시행되는 SID 180 cm를 기준으로 했을 때, ESAK의 경우 240 cm, 280 cm, 320 cm에서 각각 8.7%, 11.47%, 13.56%의 유의한 감소가 있었다. effective dose의 경우 전신에 대해 2.89%, 4.67%, 6.41%의 감소, 폐에서 5.08%, 6.98%, 9.6%의 감소가 관찰되었다. SNR의 경우 각각 9.04%, 8.24%, 11.46%의 감소가 관찰되었으며 특히, SID 260 cm ~ 300 cm 구간에서 8.03%의 작은 감소가 나타났고 SID 340 cm까지도 5.24로 5이하로 감소되지 않았다. VGA에서는 통계적으로 유의한 차이가 없는 진단적 가치가 높은 영상으로 평가되었다. 따라서 eigital chest radiography에서 SID를 300 cm까지 증가시킴으로 화질의 저하 없이 환자선량을 감소시킬 수 있을 것으로 기대된다.
        206.
        2013.08 서비스 종료(열람 제한)
        Soluble-NSF attachment protein receptor (SNARE) proteins play a role in vesicle fusion, exocytosis, and intracellular trafficking in neuronal cells as well as in fertilization and embryogenesis. We investigated the expression patterns of two SNARE proteins, SNAP-25 and synaptotagmin VII (SytVII), and their regulation by pregnant mare serum gonadotropin (PMSG) during mouse ovarian follicular development. Ovaries were obtained at 0, 12, 24, 36, and 48 h post-PMSG injection of immature mice. SNAP-25 and SytVII mRNA expression levels increased gradually in a time-dependant manner. However, protein levels revealed different patterns of expression, suggesting different translational regulation following PMSG stimulation. SNAP-25 and SytVII expression was closely associated with thickening of the granulosa cell (GC) layer and follicle morphological changes from a flattened to a cuboidal shape. To explore follicle stimulating hormone receptor (FSHR)-mediated regulation of their expression, GCs from preantral follicles were cultured to examine the effects of FSHR siRNA knockdown. FSHR siRNA abolished upregulation of the SNAREs in both PMSG and FSH-stimulated GCs. This abolished gene expression was rescued by adding dibutyryl cyclic AMP to the cultures. These results suggest that SNAP-25 and SytVII expression is regulated via the FSHR-cAMP pathway during follicular development.
        207.
        2013.08 서비스 종료(열람 제한)
        Estrogen sulfotransferase (EST) is a cytosolic enzyme that catalyzes the sulfo-conjugation of estrogens at the 3-hydroxyl position. Sulfated estrogens lose their ability to interact with the estrogen receptor (ER). Previous studies have reported that testicular expression of EST is under the regulation of LH and androgen. In an effort to understand the biological significance of estrogens in the testis, we analyzed the EST gene expression in the developing mouse testis and Leydig cells and its regulation by estrogen receptor alpha (ERα). Male mice at postnatal day (PND) 1, 7, 14, 28, and 56 and ERα flox/flox Cyp17iCre male mice which show deletion of ERα specifically in Leydig cells were used for this study. Testes and Leydig cells isolated from these mice were subjected to quantitative RT-PCR analysis and immunohistochemistry. In addition, 17β-estradiol (E2), ERα-selective agonist PPT, ERβ -selective agonist DPN, and ER antagonist ICI 182,780 were treated in primary adult Leydig cell culture. These cultured cells were subjected to quantitative RT-PCR analysis. In testis, EST mRNA level was excessively low by PND 14 and markedly increased from puberty (PND 28) onward. In the interstitium, EST mRNA was not detected by PND 14 but considerably expressed from PND 28 onward. EST immunoreactivity was moderate in the interstitium by PND 14. Strong EST immunoreactivity was found in the interstitium from PND 28 onward. In ERαflox/flox Cyp17iCre mouse testis and Leydig cells, EST mRNA level was significantly lower than wild type (ERαflox/flox). In primary adult Leydig cell culture, the expression of EST mRNA was increased by E2 and PPT, but was not changed by DPN. The expression of EST in the testis is developmentally regulated. In adult Leydig cells, EST could play an important role in the steroidogenesis by modulating the activity of estrogens. Estrogen as well as LH and androgen may play a role in the regulation of EST expression in Leydig cells via ERα signaling.
        208.
        2013.08 서비스 종료(열람 제한)
        Estrogen is a primary steroid hormone to govern cell fates in the endometrium. It induces expression of a spectrum of genes such as early growth response 1 (Egr1) critical for dynamic change of uterine environments for embryo implantation. Egr1 belongs to the Egr family of zinc finger transcription factors consisting of 4 members (Egr1 to Egr4) that are co-expressed in many different tissues, suggesting that they may have some redundant functions. Bisphenol A (BPA) is a well-known endocrine disruptor with potent estrogenic activity on reproductive system. Here we have demonstrated molecular pathway(s) by which estrogen (17β estradiol, E2) and BPA regulates Egr1 in uterus. Eight-week-old female mice were ovariectomized (OVX) and rested for a week. Uteri of OVX mice treated with E2, BPA and/or progesterone (P4) were collected 2 h after hormone treatment unless otherwise indicated. ICI 182,780 [estrogen receptor (ER) antagonist] and RU486 [progesterone receptor (PR) antagonist] were pretreated 30 min before hormone treatment. Collected uteri were mainly utilized for RT-PCR, realtime-RT-PCR and Western blotting. Egr1 mRNA was rapidly induced with the highest level at 2h after E2 treatment and gradually decreased to basal levels at 12 h. Pretreatment of ICI 182,780 effectively inhibited E2-induced phosphorylation of ERK1/2 and AKT as well as Egr1 transcription. U0126 (a pharmacological ERK1/2 inhibitor), but not Watmannin (a AKT inhibitor), significantly blocked E2-induced Egr1 expression as well as ERK1/2 phosphorylation in the uterus. P4 effectively dampened E2-dependent Egr1 transcription, and its antagonistic effects were partially interfered with RU486 pretreatment. Interestingly, Egr2 and Egr3 showed similar hormone-dependent expression profiles to that of Egr1 in the uterus. BPA (100 mg/kg) was able to induce immediate expression of Egr1 as effective as E2 at 2 h after treatment. ICI 182,780 and P4 considerably reduced BPA-induced expression of Egr1. In addition, RU486 counteracted inhibitory action of P4 on BPA-induced expression of Egr1. While overall patterns of BPA- induced expression of Egr2 and Egr3 were similar to that of Egr1, BPA was not as effective as E2 for induction of Egr2 and Egr3. BPA could induce phosphorylation of ERK1/2 as well as expression of Egr family members, too. Collectively, these results strongly suggest that BPA as well as E2 can activate concurrent expression profiles of Egr family members via ER-ERK1/2 pathways in the uterus.
        209.
        2013.08 서비스 종료(열람 제한)
        Aquaporin5 (AQP5), a water channel plays an important role in the fluid homeostasis and cell volume control in epithelial cells. In an effort to understand fluid homeostasis in the oviduct, tissue specific expression of AQP 5 was examined together with hormonal regulation of AQP5 in the mouse oviduct. To understand the oviductal fluid homeostasis and its regulation by sex steroids, We examined AQP5 expression in mouse oviduct during developmental stage and estrous cycle, and in estrogen receptor α (ERα) knockout mice oviduct. In immature mouse oviduct, expression of AQP5 expression was examined after stimulation with gonadotropins. The effect of ERα agonist (PPT) and ERβ agonist (DPN) on the oviductal expression of AQP5 was examined in ovariectomized mouse. All samples were subjected to realtime-PCR and immunohistochemistry analysis. In oviduct epithelium, AQP5 was largely found in the apicolateral membrane and cytoplasm of ERα-positive non-ciliated cells but weakly expressed in the ciliated cells. Interstitial cells, muscle cells and blood vessels were also weakly positive for AQP5 immunoreactivity. In cyclic female mice oviductal AQP5 mRNA levels were the highest at estrous. In immature mouse oviduct AQP5 mRNA and epithelial immunoreactivity were increased by PMSG, and followed by a decrease after hCG. In ERα KO mice oviduct, AQP5 mRNA levels were significantly lower than those of WT females at diestrous stage. In immature and OVX mouse oviducts, AQP5 mRNA and epithelial immunoreactivity were significantly increased by E2 and PPT. Together, our results suggest the pivotal role of AQP5 in fluid secretion and absorption of water in non-ciliated cells in oviduct. AQP5 gene is tightly activated by estrogen – ERα signaling in non-ciliated cells in oviductal epithelium, mediating the effect of estrogen on gamete transport, fertilization and early embryo development via regulating the fluid homeostasis in oviduct.
        210.
        2013.08 서비스 종료(열람 제한)
        During implantation, endometrial cells undergo functional and structural changes, and support the successful embryo development. This reaction is known as decidualization and is critical to placental formation and to prevent the uterine functions. This progress is achieved by complex communication of regulators such as hormones, cytokines and growth factors. Some of the TGF-b superfamily members such as inhibin, activin, TGF-β, and bone morphogenetic proteins (BMP) involve in uterine modulation during pregnancy. Müllerian inhibiting factor (MIF) is a member of TGF-β superfamily and regulate folliculogenesis, but its expression and roles in uterus are not clear. In this study, we investigated the expression of MIF and its receptor Ⅱ in decidualizing endometrium. Interestingly its expression was detected in the fully decidualized cells. Its receptor II was detected in undifferentiated stromal cells. MIF expression was increased by decidual maturation and MIF receptor II was decreased by decidual reaction. MIF expression was induced by estrogen and its receptor II was increased by only progesterone in the stroma cells primed with estrogen. In the uterus of delayed implantation model mice, MIF expression was peak after 6 hr of estrogen administration. MIF receptor II expression was not induced. It means that MIF and MIF receptor II are expressed in the stroma cells with the specificity on physiological status. Based on them, it is suggested that MIF may work as paracrine factors in uterus during decidualization.
        211.
        2013.07 서비스 종료(열람 제한)
        The required for Mla12 resistance (RAR1) protein is essential for the plant immune response. In rice, a model monocot species, the function of Oryza sativa RAR1 (OsRAR1) has been little explored. In our current study, we characterized the response of a rice osrar1 T-DNA insertion mutant to infection by Magnaporthe oryzae, the causal agent of rice blast disease. osrar1 mutants displayed reduced resistance compared with wild type rice when inoculated with the normally virulent M. oryzae isolate PO6-6, indicating that OsRAR1 is required for an immune response to this pathogen. We also investigated the function of OsRAR1 in the resistance mechanism mediated by the immune receptor genes Pib and Pi5 that encode nucleotide binding-leucine rich repeat (NB-LRR) proteins. We inoculated progeny from Pib/osrar1 and Pi5/osrar1 heterozygous plants with the avirulent M. oryzae isolates, race 007 and PO6-6, respectively. We found that only Pib-mediated resistance was compromised by the osrar1 mutation and that the introduction of the OsRAR1 cDNA into Pib/osrar1 rescued Pib-mediated resistance. These results indicate that OsRAR1 is required for Pib-mediated resistance but not Pi5-mediated resistance to M. oryzae.
        212.
        2013.03 KCI 등재 서비스 종료(열람 제한)
        Chrysin (5,7-dihydroxyflavone)은 프로폴리스, 꿀 같은 음식과 다양한 식물에 존재하는 천연 플라보노이드이다. Chrysin은 항산화, 항노화, 항염, 항암 효과 등 다양한 생물학적 효과를 가진다고 알려져 있다. 이 연구에서, 우리는 사람의 각질형성세포에서 chrysin이 VDR을 통한 transcriptional activity에 미치는 영향을 dual-luciferase assay을 통하여 살펴보았다. Chrysin은 농도 의존적으로 VDR을 통한 transcriptional activity를 증가시켰다. Quantitative real time PCR을 통해 chrysin이 사람의 각질형성세포에서 VDR mRNA의 발현을 증가시킴을 확인하였다. 또한, chrysin이 각질형성세포의 분화 마커인 keratin 10, involucrin 그리고 filaggrin의 mRNA 발현을 증가시킴을 확인하였다. 이러한 연구 결과는 chrysin이 VDR을 통한 transcriptional activity를 조절하여 각질형성세포의 분화를 촉진시킬 수 있다는 것을 시사한다.
        213.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        The mushroom Coriolusversicolor contains biologically active polysaccharides, most of which belong to the β glucan group. Diverse physicochemical properties, due to different sources and isolated types of β-glucans, may induce distinct biological activities. Here, we examined the effects of β-glucan from Coriolusversicolor (CVG) on the scavenger receptor B1 (SR-B1) expression and the role of SR-B1 in CVG-induced phagocytosis regulation by using SR-B1-specific shRNA transfected cells. We also examined whether Dectin-1 and CK2 are involved in SR-B1 expression in CVG-treated cells. Our study results showed that CVG increased the SR-B1 expression via Dectin-1 and CK2 in macrophages. However, the inhibition of SR-B1 expression by shRNA did not completely eliminate the effect of CVG on the increase of phagocytosis suggesting that SR-B1 is not essential for CVG-stimulated phagocytosis. This study will contribute to identify CVG's mechanism of action and its use in the development of functional foods.
        214.
        2012.10 KCI 등재 서비스 종료(열람 제한)
        본 연구는 EA에 의한 대식세포의 활성화를 매개로 한 항암효과와 항암작용과 관련된 대식세포의 면역조절효과를 확인하였다. 연구 결과 EA에 의해 RAW264.7세포 및 peritoneal macrophage 모두에서 항암효과가 증가하였으며, 증가된 대식세포의 항암효과는 TLR4 signaling을 blocking하는 CLI-095을 함께 처리하였을 때 일부 감소되었다. 이는 EA에 의한 항암 효과가 부분적으로 TLR4를 경유하는 기전으로 나타나는 것을 의미한다. 또한, EA에 대한 대식세포의 NO 분비조절효과를 측정하였으며, EA는 대식세포의 NO 생성을 증가시켰으나, 인위적으로 염증을 유발시켜 NO를 과도하게 분비한 상태에서는 NO 분비를 오히려 억제시키는 결과를 나타내었다. 이와 같이 EA에 의한 NO조절에 대한 이중 효과는 인체에 면역증강과 항염증 효과라는 긍정적인 효과를 나타내는 방향으로 조절하고 있으므로 EA를 이용한 항암요법의 보조제 및 면역보조제로써의 활용에 유익할 것으로 사료된다. 향후 EA에 대한 항암 작용 및 NO 조절에서 세포내 신호전달 작용기전에 대한 심도 있는 연구가 진행되어야 할 것으로 보인다.
        215.
        2012.09 서비스 종료(열람 제한)
        남성의 체내에 미량의 estrogen이 존재하며, 정소와 부정소에 estrogen receptor(ERα, β)가 발현한다. Estrogen은 estrogen receptor를 통한 signaling을 통해 기능을 수행한다. 본 연구에서는 출생직후, 생후 1, 2, 4, 8주령의 생쥐 정소 및 부정소를 획득한 후 정량적 RT-PCR, Western blot, 면역조직화학법, image analysis를 통해 ERα의 발현을 분석하였다. 생쥐의 주령별 정소에서 ERα mRNA의 발현분석 결과, 정소에서는 신생부터 1주령까지 발현량이 급격히 증가하였으며, 4주령부터 약간 감소하였다. Western blot 결과, 출생 직후부터 생후 7일까지 급격히 증가하였고, 14일까지 높은 수준으로 발현하다가 이후 감소하였다. 면역조직화학법을 통한 ERα의 발현부위분석 결과, 정소에서 ERα 단백질은 주로 leydig cell과 peritubular cell에서 발현하였다. Image analysis를 통한 ERα 발현의 양적분석 결과, leydig cell에서 ERα는 출생 직후에 낮게 발현하다가 7일까지 급격히 증가하였고, 14일까지 높은 발현량을 유지하다가 이후 감소하였다. 이는 발생단계에 따른 남성호르몬 농도와 상반되는 결과로서, ERα의 발현이 leydig cell의 증식과 남성호르몬의 생성을 억제하는 것으로 추측할 수 있다. Peritubular cell에서 ERα는 출생 직후부터 생후 14일까지 꾸준히 증가하다가 이후에 급격히 감소하였다. ERα는 peritubular cell의 증식에도 관여하는 것으로 사료되며, 발생단계에서 leydig cell에 비해 peritubular cell의 증식이 먼저 완료되는 것으로 사료된다. 이를 종합하면, ERα는 정소에서 스테로이드형성 및 leydig cell/peritubular cell의 증식에 관여할 것으로 사료된다.
        217.
        2012.07 서비스 종료(열람 제한)
        The plant hormone abscisic acid (ABA) serves as an integrator of environmental stress such as drought, to trigger stomatal closure by regulating specific ion channels in guard cells. We previously reported that SLAC1, an outward anion channel required for stomtal closure, was regulated via reversible protein phosphorylation events involving ABA signaling components including protein phosphatase 2C members and a SnRK2-type kinase (OST1). In this study, we reconstituted the ABA signaling pathway as a protein-protein interaction relay from the PYL/RCAR type receptors, to the PP2C-SnRK2 phosphatase-kinase pairs, to the ion channel SLAC1. The ABA receptors interact with and inhibit PP2C phosphatase activity against the SnRK2-type kinase, releasing active SnRK2 kinase to phosphorylate and activate the SLAC1 channel, leading to reduced guard cell turgor and stomatal closure. Both yeast-two hybrid and bi-molecular fluorescence complementation assays were used to verify the interactions among the components in the pathway. The biochemical assays demonstrated the activity modifications of phosphatases and kinases by their interaction partners. The SLAC1 channel activity was used as a readout for the strength of the signaling pathway depending on the presence of different combinations of signaling components.
        218.
        2012.03 KCI 등재 서비스 종료(열람 제한)
        Kisspeptin has been implicated in the process of puberty onset in various animal groups. This peptide is encoded by a gene, Kiss1 in avian and mammalian species. Contrary to these higher vertebrates, however, fish appeared to have another gene, Kiss2 that also codes for the precursor peptide of kisspeptin. To figure out biological significance of this gene during the puberty onset in fish, the expression profile of Kiss2 gene was investigated in the brain of Nile tilapia together with genes of GPR54, GnRH receptorI (rGnRHI) and GTH subunits ( and ). Expression of Kiss2 mRNA significantly increased at 2 weeks post hatch (wph) and 13 wph (<0.05). This increase coincided with the increases of GPR54 and rGnRH I gene expression. Detection of and subunit gene expression was possible later than 13 wph, indicating the activation of gonadotrophs in the pituitary. Data obtained from this study strongly suggest that, in addition to Kiss1 gene, Kiss2 gene is deeply associated with the onset of puberty by the activation of hypothalamus pituitary gonadal axis in Nile tilapia.
        219.
        2011.09 서비스 종료(열람 제한)
        남성의 체내에 미량의 estrogen이 존재하며, 정소와 부정소에 estrogen receptor (ERα, β)가 발현한다. Estrogen은 ERα와 ERβ를 통해 세포의 생존, 증식 및 분화를 조절한다. ERα는 정소에서 스테로이드형성, 정자형성 부정소에서 정자 성숙 및 부정소 체액항상성 조절기능을 수행할 것으로 추측된다. 본 연구에서는 출생 직후, 생후 1, 2, 4, 8주령의 생쥐 정소 및 부정소를 획득한 후 정량적 RT-PCR, Western blot, 면역조직화학법을 이용하여 ERα의 발현을 확인하였다. 생쥐의 주령별 정소와 부정소에서 ERα mRNA의 발현분석 결과, 정소에서는 신생부터 1주령까지 발현량이 급격히 증가하였으며 4주령부터 약간 감소하였다. 부정소에서는 신생부터 4주령까지 비슷한 발현량을 보였으며, 8주령에서 발현량이 증가하였다. Western blot 결과, 8주령 부정소에서 efferent duct에서 가장 강하게 발현하였고, 부정소 체부에서 가장 적게 발현되었다. 면역조직화학법을 통한 ERα의 발현부위분석 결과, 정소에서 ERα 단백질은 주로 Leydig cell과 peritubular cell에서 발현하였다. 부정소에서는 efferent duct와 두부 부정소에서 가장 강하게 발현되었으며, 두부 부정소의 principal cell과 narrow cell에서 강하게 발현되었다. 체부 부정소에서는 basal cell과 clear cell에서 발현하였다. 미부부정소에서는 stromal cell에서 강하게 발현하였고, basal cell과 clear cell에서도 발현되었다. ERα는 정소에서 스테로이드형성 및 Leydig cell의 증식에 관여하며, 부정소에서 정자의 성숙 및 저장에 관여할 것으로 사료된다.
        220.
        2011.09 서비스 종료(열람 제한)
        In particular, maternal prostacyclin (PGI2) is critical for embryo implantation and the action of PGI2 is not mediated via its G protein-coupled membrane receptor, IP, but its nuclear receptor, peroxisome proliferator-activated receptor δ (PPARδ). Recently, several studies have shown that PGI2 enhances blastocyst development and/or hatching rate in vitro, and subsequently implantation and live birth rates in mice. However, the mechanism by which PGI2 improves preimplantation embryo development in vitro remains unclear. Using molecular, pharmacologic and genetic approaches, we show that PGI2-induced PPARδ activation accelerates blastocyst hatching in mice. mRNAs for PPARδ, RXRs (heterodimeric partners of PPARδ) and PGI2 synthase are temporally induced after zygotic gene activation and their expression reaches maximum levels at the blastocyst stage, suggesting that functional complex of PPARδ can be formed in the blastocyst. Carbaprostacyclin (cPGI, a stable analogue of PGI2) and GW501516 (a PPARδ selective agonist) significantly accelerated blastocyst hatching but did not increase total cell number of cultured blastocysts. Whereas U51605 (a PGIS inhibitor) interfered with blastocyst hatching, GW501516 restored U51605-induced retarded hatching. In contrast to improvement of blastocyst hatching by PPARδ agonists, PPAR antagonists significantly inhibited blastocyst hatching. Furthermore, deletion of PPARδ at early stages of preimplantation mouse embryos caused delay of blastocyst hatching, but did not impair blastocyst development. Taken together, PGI2-induced PPARδ activation accelerates blastocyst hatching in mice.
        11 12 13