검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 246

        222.
        2011.04 KCI 등재 서비스 종료(열람 제한)
        Ti-SBA-15 catalysts doped with samarium ion were synthesized using conventional hydrothermal method. The physical properties of Sm/Ti-SBA-15 catalysts have been characterized by XRD, FT-IR, DRS and PL. In addition, we have also examined the activity of these materials on the photocatalytic decomposition of methylene blue. The Sm/ Ti-SBA-15 was shown to have the mesoporous structure regardless of Sm ion doping. With doping amount of 1% lanthanide ion, the pore size and pore volume of Sm(Er, Cs)/Ti-SBA-15 decreased and the surface area increased. For the purpose of vibration characteristics on the Ti-SBA-15 and Sm/Ti-SBA-15 photocatalysts, the IR absorption at 960 cm-1 commonly accepted the characteristic vibration of Ti-O-Si bond. 1% of Sm/Ti-SBA-15 had the highest photocatalytic activity on the decomposition of methylene blue but the catalysts doped with Er ions had lower activity in comparison with pure Ti-SBA-15 catalyst.
        223.
        2010.12 서비스 종료(열람 제한)
        희토류 정광으로부터 첨단산업 원료소재로 수요가 급증하고 있는 고순도 희토류 소재를 제조하기 위한 가장 첫 공정은 침출공정이다. 즉, 희토류 정광으로부터 원소별 희토류 성분을 분리하기 위해서는 용액상태로 전환이 필요한데, 이때 일반적인 산 및 알카리 용액에는 희토류 성분은 침출이 되지 않으므로 강산 또는 강 알카리 조건에서 희토류 정광을 침출 가능한 형태로 변환 시켜주는 분해공정이 선행되며 이후 산 침출에 의해 희토류 성분을 침출하게 된다. 본 고에서는 대표적인 희토류 광물인 모나자이트와 바스트나사이트, 그리고 이 광물의 혼합물 형태로 생산되는 혼합광물에 대한 분해 및 침출공정을 소개하고자 한다.
        224.
        2010.05 KCI 등재 서비스 종료(열람 제한)
        The generation of TiO2 nanoparticles by a thermal decomposition of titanium tetraisopropoxide (TTIP) was carried out experimentally using a tubular electric furnace at various synthesis temperatures (700, 900, 1100 and 1300℃) and precursor heating temperatures (80, 95 and 110℃). Effects of degree of crystallinity, surface area and anatase mass fraction of those TiO2 nanoparticles on photocatalytic properties such as decomposition of methylene blue was investigated. Results show that the primary particle diameter obtained from thermal decomposition of TTIP was considerably smaller than the commercial photocatalyst (Degussa, P25). Also, those specific surface areas were more than 134.4 m2/g. Resultant TiO2 nanoparticles showed improved photocatalytic activity compared with Deggusa P25. This is contributed to the higher degree of crystallinity, surface area and anatase mass fraction of TiO2 nanoparticles compared with P25.
        226.
        2009.07 KCI 등재 서비스 종료(열람 제한)
        Catalytic activities of V2O5/TiO2 catalyst were investigated under reaction conditions such as reaction temperature, catalyst size, inlet concentration and space velocity. A 1,2-dichlorobenzene(1,2-DCB) concentrations were measured in front and after of the heated V2O5/TiO2 catalyst bed, and conversion efficiency of 1,2-DCB was determined from it's concentration difference. The conversion of 1,2-DCB using a pellet type catalyst in the bench-scale reactor was lower than that with the powder type used in the micro flow-scale reactor. However, when the pellet size was halved, the conversion was similar to that with the powder type catalyst. The highest conversion was shown with an inlet concentration of 100 ppmv, but when the concentration was higher or lower than 100 ppmv, the conversion was found to decrease. Complete conversion was obtained when the GHSV was maintained at below 10,000 h-1, even at the relatively low temperature of 250°C. Water vapor inhibited the conversion of 1,2-DCB, which was suspected to be due to the competitive adsorption between the reactant and water for active sites.
        227.
        2008.11 KCI 등재 서비스 종료(열람 제한)
        This study examined the catalytic destruction of 1,2-dichlorobenzene on V2O5/TiO2 nanoparticles. The V2O5/TiO2 nanoparticles were synthesized by the thermal decomposition of vanadium oxytripropoxide and titanium. The effects of the synthesis conditions, such as the synthesis temperature and precursor heating temperature, were investigated. The specific surface areas of V2O5/TiO2 nanoparticles increased with increasing synthesis temperature and decreasing precursor heating temperature. In addition, the removal efficiency of 1,2-dichlorobenzene was promoted by a decrease in heating temperature. However, the removal efficiency of 1, 2-dichlorobenzene was decreased by an anatase to rutile phase transformation at temperatures 1,300℃.
        230.
        2007.04 KCI 등재 서비스 종료(열람 제한)
        The sonolytic decomposition of NHCs(Nitrogen Heterocyclic Compounds), such as atrazine[6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], simazine(6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine), trietazine(6-chloro-N,N,N'-triethyl-1,3, 5-triazine-2,4-diamine), in water was investigated at a ultrasound frequency of 200kHz with an acoustic intensity of 200W under argon and air atmospheres. The concentration of NHCs decreased with irradiation, indicating pseudo-first-order kinetics. The rates were in the range 1.06∼2.07(×10−2min−1) under air and 1.30∼2.59(×10−2min−1) under argon at a concentration of 200μM of NHCs. The rate of hydroxyl radicals(∙OH) formation from water is 19.8μMmin−1 under argon and 14.7μMmin−1 under air in the same sonolysis conditions. The sonolysis of NHCs is effectively inhibited, but not completely, by the addition of t-BuOH(2-methyl-2-propanol), which is known to be an efficient ∙OH radical scavenger in aqueous sonolysis. This suggests that the main decomposition of NHCs proceeds via reaction with ∙OH radical; a thermal reaction also occurs, although its contribution is small. The addition of appropriate amounts of Fenton's reagent [Fe2+] accelerates the decomposition. This is probably due to the regeneration of ∙OH radicals from hydrogen peroxide, which would be formed from recombination of ∙OH radicals and which may contribute a little to the decomposition.
        231.
        2007.04 KCI 등재 서비스 종료(열람 제한)
        The photodegradation and by-products of the gaseous toluene with TiO2 (P25) and short-wavelength UV (UV254+185nm) radiation were studied. The toluene was decomposed and mineralized efficiently owed to the synergistic effect of photochemical oxidation in the gas phase and photocatalytic oxidation on the TiO2 surface. The toluene by the UV254+185nm photoirradiated TiO2 were mainly mineralized CO2 and CO, but some water-soluble organic intermediates were also formed under severe reaction conditions. The ozone and secondary organic aerosol were produced as undesirable by-products. It was found that wet scrubber was useful as post-treatment to remove water-soluble organic intermediates. Excess ozone could be easily removed by means of a MnO2 ozone-decomposition catalyst. It was also observed that the MnO2 catalyst could decompose organic compounds by using oxygen reactive species formed in process of ozone decomposition.
        232.
        2006.07 KCI 등재 서비스 종료(열람 제한)
        Present study evaluated the low-temperature destruction of n-hexane and benzene using mesh-type transition-metal platinum(Pt)/stainless steel(SS) catalyst. The parameters tested for the evaluation of catalytic destruction efficiencies of the two volatile organic compounds(VOC) included input concentration, reaction time, reaction temperature, and surface area of catalyst. It was found that the input concentration affected the destruction efficiencies of n-hexane and benzene, but that this input-concentration effect depended upon VOC type. The destruction efficiencies increased as the reaction time increased, but they were similar between two reaction times for benzene(50 and 60 sec), thereby suggesting that high temperatures are not always proper for thermal destruction of VOCs, when considering the destruction efficiency and operation costs of thermal catalytic system together. Similar to the effects of the input concentration on destruction efficiency of VOCs, the reaction temperature influenced the destruction efficiencies of n-hexane and benzene, but this temperature effect depended upon VOC type. As expected, the destruction efficiencies of n-hexane increased as the surface area of catalyst, but for benzene, the increase rate was not significant, thereby suggesting that similar to the effects of the reaction temperature on destruction efficiency of VOCs, high catalyst surface areas are not always proper for economical thermal destruction of VOCs. Depending upon the inlet concentrations and reaction temperatures, almost 100% of both n-hexane and benzene could be destructed. The current results also suggested that when applying the mesh type transition Metal Pt/SS catalyst for the better catalytic pyrolysis of VOC, VOC type should be considered, along with reaction temperature, surface area of catalyst, reaction time and input concentration.
        233.
        2006.03 KCI 등재 서비스 종료(열람 제한)
        Oxidative TCE decomposition over TiO2-supported single and complex metal oxide catalysts has been conducted using a continuous flow type fixed-bed reactor system. Different types of commercial TiO2 were used for obtaining the supported catalysts via an incipient wetness technique. Among a variety of titanias and metal oxides used, a DT51D TiO2 and CrOx would be the respective promising support and active ingredient for the oxidative TCE decomposition. The TiO2-based CrOx catalyst gave a significant dependence of the catalytic activity in TCE oxidation reaction on the metal loadings. The use of high CrOx contents for preparing CrOx/TiO2 catalysts might produce Cr2O3 crystallites on the surface of TiO2, thereby decreasing catalytic performance in the oxidative decomposition at low reaction temperatures. Supported CrOx-based bimetallic oxide systems offered a very useful approach to lower the CrOx amounts without any loss in their catalytic activity for the catalytic TCE oxidation and to minimize the formation of Cl-containing organic products in the course of the catalytic reaction.
        234.
        2005.10 KCI 등재 서비스 종료(열람 제한)
        This study introduces the development of new supercritical water oxidation(SCW)(multiple step oxidation) to destruct recalcitrant organic substances totally and safely by using sodium nitrate as an oxidant. This method has solved the problems of conventional SCW, such as precipitation of salt due to lowered permittivity, pressure increase following rapid rise of reaction temperature, and corrosion of reactor due to the generation of strong acid. Destruction condition and rate in the supercritical water were examined using Polyvinyl Chloride(PVC) and ion exchange resins as organic substances. The experiment was carried out at 450℃ for 30 min, which is relatively lower than the temperature for supercritical water oxidation (600-650℃). The decomposition rates of various incombustible organic substances were very high [PVC(87.5%), Anion exchange resin(98.6%), Cationexchange resin(98.0%)]. It was observed that hetero atoms existed in organic compounds and chlorine was neutralized by sodium (salt formation). However, relatively large amount of sodium nitrate (4 equivalent) was required to raise the decomposition ratio. For complete oxidation of PCB was intended, the amount of oxidizer was an important parameter.
        235.
        2005.05 KCI 등재 서비스 종료(열람 제한)
        For the destruction of toxic chlorinated organic compounds, this study proposes improved supercritical water oxidation method (multistep oxidation) using sodium nitrate as an oxidizer. This method solves the problems involved in the existing supercritical water oxidation method. Multistep oxidation means that NaNO3 is oxidized to N2 via NaNO2 and NO. Toxic and hard to destroy organic substances like para-dichlorobenzen(4-DCBz), polychlorinate biphenyl(PCB) ware oxidized to non toxic substances in a condition, in which rapid pressure and temperature rise is restrained as much as possible. 4-dichlorobenzene(4-DCBz) and Polychlorinate biphenyl(PCB) in condition(450℃, pw=0.25g/cm3, 30min) Was discomposed perfectly.
        236.
        2005.03 KCI 등재 서비스 종료(열람 제한)
        The performance of ozone contactor in ozone-BAC advanced water treatment process was evaluated by the degree of decomposition of organic matters. The degree was measured by the analyses of UV254 absorbance and the concentrations of DOC and BDOC for the sand filtered water and the ozone treated water, respectively. In addition, the ozone concentration in the contactor, required for the maximum BDOC concentration, was selected as the optimum concentration, and the appropriate residential time of ozone treated water in a reservoir was recommended based on the residual ozone concentration in the treated water. The following results were obtained from the pilot scale experiments. By ozonation UV254 absorbance was decreased, and BDOC concentration was increased. The change of DOC concentration by ozonation was negligible, but the excess input of ozone resulted in the removal of the small amount of BDOC by complete oxidation. The optimum ozone concentration was 0.58 mg O3/mg DOC. In order to remove residual ozone, 20 minutes of the residential time were enough after ozonation.
        237.
        2004.01 KCI 등재 서비스 종료(열람 제한)
        In this study, sulfate reduction reaction was used to increase the decomposition of organics, which is the most critical factor for the stabilization of a landfill site. Composite of sewage sludge, papers, and incineration ashes was used in the column. The experimental results indicated that out of 10 reactors, the reactors 3, 4, 8, and 9 showed higher organics (i.e., TOC) removal rate than that in the absence of sulfate. The organics removal rates (K) in R3 and R9 were 8.65e-4/d and 3.82e-4/d, respectively. The times to reach 10% of initial concentrations in R3 and R9 was 7.3 and 16.5 years, respectively, showing faster organics decomposition rates in these reactors.
        239.
        2003.03 KCI 등재 서비스 종료(열람 제한)
        The characteristics of photocatalytic decomposition of dye waste water by titanium dioxide was studied in a batch reactor under constant strength of ultra-violet ray. The decomposition rate of methyl orange by TiO2 was pseudo-first order, anatase type TiO2 was more effective than rutile type below the dosage of 5g. The decomposition rate was increased with decreasing initial pH, increasing reaction temperature and oxidant concentration. The decomposition rate of water soluble dyes was decreased in order of rhodamine B>eosin Y>methyl orange.
        240.
        2002.07 KCI 등재 서비스 종료(열람 제한)
        The effects of noble gas (such as helium, neon, argon, krypton, and xenon) on the sonolytic decomposition of water and 2-methyl-2-propanol(t-butanol) with 200 kHz high power ultrasound were investigated. The physical properties of the noble gas have an effect on the formation rate of products (H2O2, H2, O2) and the decomposition rate on the sonolytic decomposition of water. The pyrolysis products, such as methane, ethane, ethylene, and acetylene are formed during the sonolytic decomposition of t-butanol. From the estimation of the ratio [C2H4 + C2H2] / [C2H6], the cavitation temperature would be varied by the used noble gas. In all cases for the sonolytic decomposition of water, t-butanol, and diethyl phthalate, the decomposition rates were xenon > krypton > argon > neon > helium with a significant difference and were closely correlated with the formation rate of OH radical and high temperature inside the cavitation bubble under each noble gas.
        11 12 13