In this study, numerical modeling on the gas flow and off-gases in the low temperature carbonization furnace for carbon fiber was analyzed. The furnace was designed for testing carbonization process of carbon fibers made from various precursors. Nitrogen gas was used as a working gas and it was treated as an incompressible ideal gas. Three-dimensional computational fluid dynamics for steady state turbulent flow was used to analyze flow pattern and temperature field in the furnace. The off-gas mass fraction and cumulative emission gas of species were incorporated into the CFD analyses by using the user defined function(UDF). As a results, during the carbonization process, the emission of CO2 was the dominant among the off-gases, and tow moving made the flow in the furnace be uniform.
This paper studies the flow characteristics inside the low-temperature carbonization(LTF) including sealing chamber with labyrinth. The flow behavior inside the furnace was analyzed according to different labyrinth shapes. The effects of labyrinth baffle number, and clearance between upper and lower baffles in the sealing chamber were investigated. The large vortex and stagnation region are generated in the chamber when the gap between the baffle and baffle is small. As a result, the gas discharge flow rate can be increased by 29.4% when the flow space of labyrinth is made 75% of the baffle length.
This study developed a flame-retardant fiber-reinforced composite material that satisfies the required regulations of railway vehicle interior parts for the purpose of reducing weight and simplifying the production process using SMC(sheet molding compounds) composite materials. It is essential to secure flame-retardant performance that minimizes flames and smoke for the safe evacuation of passengers in case of fire for interior parts of railway vehicles. In this study, the resin for SMC was developed by adding various flame retardant materials such as vinyl ester (halogen-based and phosphorus-based) and antimony trioxide, and chopped glass fibers were used as the reinforcing material. As a result of preparing specimens for phosphorus-based and halogen-based SMC materials, and comparing the flame retardant performance, the phosphorus-based SMC material had an oxygen index of 36.1, smoke density (1minute 30 seconds, 4minutes, 10minutes) of 1.7, 51.5, 195.1. It was measured with a toxicity index of 0.05 R and average heat for sustained burning of 4.5MJ/m, which satisfies all the flame retardant standards required for interior parts of railway vehicles, and it was found that most of the performance was better than that of halogen-based SMC.
The generation of TiO2 nanoparticles by a thermal decomposition of titanium tetraisopropoxide (TTIP) was carried out experimentally using a tubular electric furnace at various synthesis temperatures (700, 900, 1100 and 1300℃) and precursor heating temperatures (80, 95 and 110℃). Effects of degree of crystallinity, surface area and anatase mass fraction of those TiO2 nanoparticles on photocatalytic properties such as decomposition of methylene blue was investigated. Results show that the primary particle diameter obtained from thermal decomposition of TTIP was considerably smaller than the commercial photocatalyst (Degussa, P25). Also, those specific surface areas were more than 134.4 m2/g. Resultant TiO2 nanoparticles showed improved photocatalytic activity compared with Deggusa P25. This is contributed to the higher degree of crystallinity, surface area and anatase mass fraction of TiO2 nanoparticles compared with P25.