검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,072

        221.
        2018.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        During a long-term operation of polymer electrolyte membrane fuel cells(PEMFCs), the fuel cell performance may degrade due to severe agglomeration and dissolution of metal nanoparticles in the cathode. To enhance the electrochemical durability of metal catalysts and to prevent the particle agglomeration in PEMFC operation, this paper proposes a hybrid catalyst structure composed of PtCo alloy nanoparticles encapsulated by porous carbon layers. In the hybrid catalyst structure, the dissolution and migration of PtCo nanoparticles can be effectively prevented by protective carbon shells. In addition, O2 can properly penetrate the porous carbon layers and react on the active Pt surface, which ensures high catalytic activity for the oxygen reduction reaction. Although the hybrid catalyst has a much smaller active surface area due to the carbon encapsulation compared to a commercial Pt catalyst without a carbon layer, it has a much higher specific activity and significantly improved durability than the Pt catalyst. Therefore, it is expected that the designed hybrid catalyst concept will provide an interesting strategy for development of high-performance fuel cell catalysts.
        4,000원
        222.
        2018.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the seismic performance of a hybrid seismic energy dissipation device composed of a viscoelastic damper and a steel slit damper connected in parallel. A moment-framed structure is designed without seismic load and is retrofitted with the hybrid dampers. The model structure is transformed into an equivalent simplified system to find out optimum story-wise damper distribution pattern using genetic algorithm. The effectiveness of the hybrid damper is investigated by fragility analysis of the structure with and without the dampers. The analysis results show that after seismic retrofit the probability of reaching damage states, especially the complete damage state, of the structure turn out to be significantly reduced.
        4,000원
        224.
        2018.11 구독 인증기관·개인회원 무료
        Graphene oxide (GO), consisting of numerous oxygen functional groups and 2-D graphene sheet, has drawn intensive attention as a promising membrane material due to its molecular-sieving nanochannel and ease of scale up. However, GO membranes have generally showed a low gas permeability stemming from the high tortuosity of laminate structure. Herein, we prepared silica/GO hybrid membranes to overcome the low gas permeability of GO membrane by tuning its surface area and interlayer spacing. The size of silica nanoparticles grown on the GO nanosheets was successfully controlled by varying the concentration of silica precursor. In particular, the relationship between gas permeability of silica/GO hybrid membranes and the size of silica nanoparticles was investigated.
        225.
        2018.11 구독 인증기관·개인회원 무료
        In this study, various physical cleaning methods such as physical washing and osmotic backwash, were performed to understand membrane fouling characteristics by employing real secondary wastewater effluent (SWWE). In addition, microfiltration (MF) and ultrafiltration (UF) pretreatments were compared to maximize removal of organic matter and to control membrane fouling efficiently. Organic foulants deposited on the active layer of FO membrane were observed by fouling behavior test. The relationship between concentrations of natural organic matter and membrane fouling was also investigated from the bench-scale FO tests. Finally, by quantitative analysis of correlations between foulants and fouling reversibility with the modified fouling index (MFI), we identified the applicability of MFI in predicting FO intake water fouling potential.
        226.
        2018.11 구독 인증기관·개인회원 무료
        최근 국내에서 세계 최초로 개발한 SWRO-PRO 복합해수담수화 시스템은 압력지연삼투(PRO) 기술을 활용하여 역삼투(SWRO) 해수담수화 플랜트에서 발생하는 고염도 농축수의 삼투에너지를 회수하는 기술이다. 고염도 농축수와 저염도 하수처리수를 각각 PRO 시스템의 유도용액과 유입수로 사용하며, 두 용액의 농도차에 의해 발생되는 삼투에너지를 압력교환장치(isobaric pressure exchanger)를 통해 회수하여 SWRO 고압펌프에서 필요한 에너지를 줄이거나, 터빈 형태의 에너지 회수장치(Pelton turbine)를 통해 전력을 생산하는 기술이다. PRO 시스템을 통해 회수된 에너지는 해수담수화 운영비를 절감하는데 기여하고, 고농도 농축수의 희석 방류로 해양생태계 영향을 최소화 시킬 수 있다.
        228.
        2018.11 구독 인증기관·개인회원 무료
        Microenvironments surrounded with various extracellular matrix (ECM) components can decide specifically the fate of spermatogonial stem cells (SSCs) and integrin heterodimers recognizing directly ECM proteins play an important role in transporting ECM-derived signals into cytoplasm, resulting in inducing a variety of biological functions such as cell attachment, self-renewal and differentiation. However, to date, studies on type of integrin heterodimers expressed functionally on the undifferentiated SSCs derived from mouse with hybrid strain remain unclear. Therefore, we tried to investigate systematically what kind of integrin heterodimers are expressed transcriptionally, translationally and functionally in the SSCs derived from testis of hybrid (B6CBAF1) mouse. For these, magnetic activated cell sorting (MACS) using Thy1 antibody was used for isolating SSCs from testis, and real-time PCR or fluorescence immunoassay was conducted for measuring transcriptional or translational level of integrin α and β subunits in the isolated SSCs. Subsequently, antibody inhibition assay was conducted for confirming functionality of presumed integrin heterodimers. As the results, transcriptional levels of genes encoding total 25 integrin subunits were quantified, 7 integrin α (α4, α6, α7, α9, αV, αL and αE) and 2 integrin β (β1 and β5) subunit genes showed significantly increased transcriptional up-regulation, compared to the other integrin subunit genes. In contrast, integrin α3, α5, α10 and α11, and integrin β2, β3, β4 and β7 were weakly transcribed. When translational levels of the integrin α subunits showing high transcription level (α4, α6, α7, α9, αV, αL and αE) were measured, significantly strong translational up-regulation of integrin α6, α7, α9, αV and αL subunit genes were detected, whereas integrin α4 and αE subunit genes were weakly. In case of integrin β subunit, β1 evaluated more expression than β5. Based on these results, we speculated that the undifferentiated SSCs derived from B6CBAF1 mouse might express integrin α4β 1, α6β1, α7β1, α9β1, αVβ1 or αVβ5 on plasma membrane. Subsequently, the hybrid strain SSCs showed significantly increased adhesion to fibronectin, laminin, tenascine-C and vitronectin and functional blocking of integrin α4β1, α6β1, α9β1, and αVβ1 or αVβ5 in SSCs significantly inhibited attachment to fibronectin, laminin, tenascin-C and vitronectin, respectively. Accordingly, we could identify that the hybrid (B6CBAF1) mouse-derived SSCs had integrin α4β1, α6β1, α9β1, αVβ1 or αVβ5 on plasma membrane. Moreover, this information will greatly contribute to constructing non-cellular niche supporting self-renewal of SSCs in the future.
        234.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, researches on light weight of vehicles have been actively carried out to reduce fuel consumption. Researchers have generally attempted to replace metal materials with composites, but these materials do not meet the required strength and rigidity of the vehicle and require a variety of design approaches. In this paper, deck assembly of truck was compared and compared with assembly using existing floor as Apitong, and it was verified by structural analysis and modal analysis. To do this, we measured the mechanical properties of the material through tests and evaluated the safety of the Deck Assembly through maximum equivalent stress, total deformation, and safety factor values. In addition, the fit of the hybrid deck assembly structure was evaluated by measuring the approximation of the analysis by single component assembly test.
        4,000원
        235.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, we develop a conductive copper/carbon nanomaterial additive and investigate the effects of the morphologies of the carbon nanomaterials on the conductivities of composites containing the additive. The conductive additive is prepared by mechanically milling copper powder with carbon nanomaterials, namely, multi-walled carbon nanotubes (MWCNTs) and/or few-layer graphene (FLG). During the milling process, the carbon nanomaterials are partially embedded in the surfaces of the copper powder, such that electrically conductive pathways are formed when the powder is used in an epoxy-based composite. The conductivities of the composites increase with the volume of the carbon nanomaterial. For a constant volume of carbon nanomaterial, the FLG is observed to provide more conducting pathways than the MWCNTs, although the optimum conductivity is obtained when a mixture of FLG and MWCNTs is used.
        4,000원
        236.
        2018.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This investigates the microstructure and mechanical properties of Al hybrid material prepared by electromagnetic duo-casting to determine the effect of heat treatment. The hybrid material is composed of an Al-Mg-Si alloy, pure Al and the interface between the Al-Mg-Si alloy and pure Al. It is heat-treated at 373, 573 and 773K for 1h and T6 treated (solution treatment at 773K for 1h and aging at 433K for 5h). As the temperature increases, the grain size of the Al-Mg-Si alloy in the hybrid material increases. The grain size of the T6 treated Al-Mg-Si alloy is similar to that of one heat-treated at 773K for 1h. The interface region where the micro-hardness becomes large from the pure Al to the Al-Mg-Si alloy widens with an increasing heat temperature. The hybrid material with a macro-interface parallel to the tensile direction experiences increased tensile strength, 0.2% proof stress and the decreased elongation after T6 heat treatment. On the other hand, in the vertical direction to the tensile direction, there is no great difference with heat treatment. The bending strength of the hybrid material with a long macro-interface to the bending direction is higher than that with a short macro-interface, which is improved by heat treatment. The hybrid material with a long macro-interface to the bending direction is fractured by cracking through the eutectic structure in the Al-Mg-Si alloy. However, in the hybrid material with a short macro-interface, the bending deformation is observed only in the limited pure Al.
        4,000원
        237.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 우수한 유연성과 화학적 안정성 등을 가진 고분자 수지와 우수한 기계적 성질 등을 나타내는 무기 재료로 이루어진 나노 복합 시스템으로써 유-무기 하이브리드 코팅 필름에 관한 연구가 활발히 진행되고 있다. 아크릴레이트 단량체로써 사용된 o-phenylphenoxyethyl acrylate (OPPEA)는 1.576의 높은 굴절률을 나타내고, Bisphenol A ethoxylate diacrylate (BAEDA)는 굴절률은 낮지만 경화된 고분자의 경도를 향상시킨다. 또한, 무기 소재로써 사용된 지르코니아는 산화지르코늄으로써 우수한 내구성과 광학특성 등을 나타낸다. 본 연구에서는 광학 특성을 향상시키기 위한 목적으로 아크릴레이트 단량체 중 BAEDA의 함량을 조절하여 필름을 제조한 뒤 연필 경도계와 아베굴절계를 이용하여 광학 특성 변화를 확인하였고, UV-vis spectrophotometer을 이용해 투과도를 비교하여 최적의 조건을 확립하였다. 그리고 실란 커플링제인 γ-methacryloxypropyltrimethoxysilane (MPS)를 사용하여 지르코니아를 소수화 처리하여 아크릴레이트 단량체에 대한 분산성을 향상시키고, 개질 전후의 물에 대한 분산성 변화를 조사하여 물에 대한 친화력이 감소하였음을 확인하였고, FT-IR ATR spectrophotometer를 통해 MPS에 의해 도입된 1716 cm-1에서의 에스터 C=O 결합 peak의 존재를 통해 MPS에 의한 지르코니아 표면의 개질 반응이 진행되었음을 확인하였다. 또한, 지르코니아의 표면에 도입된 규소 원자의 존재는 X 선 형광법을 이용하여 확인하였다. 그리고 화학적으로 개질된 지르코니아를 아크릴레이트 단량체에 도입하여 광경화 필름을 제조하였을 때, 굴절률은 아크릴레이트 자체 필름보다 1.2% 향상되었음을 확인하였고, SEM/EDS mapping 분석을 통해 PET 필름에 코팅된 개질 후 지르코니아가 아크릴레이트 코팅층에 균일하게 분포되어 있음을 알 수 있었다.
        4,200원
        238.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A base isolation system is widely used to reduce seismic responses of low-rise buildings. This system cannot be effectively applied to high-rise buildings because the initial stiffness of the high-rise building with the base isolation system maintains almost the same as the building without the base isolation system to set the yield shear force of the base isolation system larger than the design wind load. To solve this problem, the mid-story isolation system was proposed and applied to many buildings. The mid-story isolation system has two major objectives; first to reduce peak story drift and second to reduce peak drift of the isolation story. Usually, these two objectives are in conflict. In this study, a hybrid mid-story isolation system for a tall building is proposed. A MR (magnetorheological) damper was used to develop the hybrid mid-story isolation system. An existing building with mid-story isolation system, that is “Shiodome Sumitomo Building” a high rise building having a large atrium in the lower levels, was used for control performance evaluation of the hybrid mid-story isolation system. Fuzzy logic controller and genetic algorithm were used to develop the control algorithm for the hybrid mid-story isolation system. It can be seen from analytical results that the hybrid mid-story isolation system can provide better control performance than the ordinary mid-story isolation system and the design process developed in this study is useful for preliminary design of the hybrid mid-story isolation system for a tall building.
        4,000원
        239.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A conductive additive is prepared by dispersing multi-walled carbon nanotubes (MWCNTs) on Cu powder by mechanical milling and is distributed in epoxy to enhance its electrical conductivity. During milling, the MWCNTs are dispersed and partially embedded on the surface of the Cu powder to provide electrically conductive pathways within the epoxy-based composite. The degree of dispersion of the MWCNTs is controlled by varying the milling medium and the milling time. The MWCNTs are found to be more homogeneously dispersed when solvents (particularly, non-polar solvent, i.e., NMP) are used. MWCNTs gradually disperse on the surface of Cu powder because of the plastic deformation of the ductile Cu powder. However, long-time milling is found to destroy the molecular structure of MWCNTs, instead of effectively dispersing the MWCNTs more uniformly. Thus, the epoxy composite film fabricated in this study exhibits a higher electrical conductivity than 1.1 S/cm.
        4,000원
        240.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        SWRO-PRO hybrid desalination technology is recently getting more attention especially in large desalination markets such as USA, Middle East, Japan, Singapore, etc. because of its promising potential to recover a considerable amount of osmotic energy from brine (a high-concentration solution of salt, 60,000 – 80,000 mg/L) and also to minimize the impact of the discharged brine into a marine ecosystem. By the research and development of the core technologies of the SWRO-PRO desalination system in a national desalination research project (Global MVP) supported by Ministry of Land, Infrastructure, and Transport (MOLIT) and Korea Agency for Infrastructure Technology Advancement (KAIA), it is anticipated that around 25% of total energy consumption rate (generally 3 to 4 kWh/m3) of the SWRO desalination can be reduced by recovering the brine’s osmotic energy utilizing wastewater treatment effluent as a PRO feed solution and an isobaric pressure exchanger (PX, ERI) as a PRO energy converter. However, there are still several challenges needed to be overcome in order to ultimately commercialize the novel SWRO-PRO process. They include system optimization and integration, development of efficient PRO membrane and module, development of PRO membrane fouling control technology, development of design and operation technology for the system scaling-up, development of diverse business models, and so on. In this paper, the current status and progress of the pilot study of the newly developed SWRO-PRO hybrid desalination technology is discussed.
        4,000원