검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 55

        21.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The densification behavior of Al-20Si-5.5Fe-1.2Mg-0.5Mn powders was investigated through micro-structure analysis of sintered specimens. The specimens sintered in vacuum or in high purity (99.999%) nitrogen showed porous near-surface microstructures. The densification of near-surface part was enhanced by means of ultra-high purity (99.9999%) nitrogen atmosphere. The relationship between slow densification and oxide surfaces of Al alloy powders was discussed. And the effects of Mg addition, nitrogen gas, and humidity on densification were discussed. In addition, the rapid growth of primary Si crystals above the critical temperature was reported.
        4,000원
        22.
        2008.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the bottom-up powder metallurgy and the top-down severe plastic deformation (SPD) techniques for manufacturing bulk nanomaterials were combined in order to achieve both full density and grain refinement without grain growth of rapidly solidified Al-20 wt% Si alloy powders during consolidation processing. Continuous equal channel multi-angular processing (C-ECMAP) was proposed to improve low productivity of conventional ECAP, one of the most promising method in SPD. As a powder consolidation method, C-ECMAP was employed. A wide range of experimental studies were carried out for characterizing mechanical properties and microstructures of the ECMAP processed materials. It was found that effective properties of high strength and full density maintaining nanoscale microstructure are achieved. The proposed SPD processing of powder materials can be a good method to achieve fully density and nanostructured materials.
        4,000원
        23.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructural and mechanical properties of Al-Si alloyed powder, prepared by gas atomization fallowed by hot extrusion, were studied by optical and scanning electron microscopies, hardness and wear testing. The gas atomized Al-Si alloy powder exhibited uniformly dispersed Si particles with particle size ranging from 5 to . The hot extruded Al-Si alloy shows the average Si particle size of less than . After heat-treatment, the average particle size was increased from 2 to . Also, mechanical properties of extruded Al-Si alloy powder were analyzed before and after heat-treatment. As expected from the microstructural analysis, the heat-treated samples resulted in a decrease in the hardness and wear resistance due to Si particle growth. The friction coefficient of heat-treated Al-Si alloyed powder showed higher value tough all sliding speed. This behavior would be due to abrasive wear mechanism. As sliding speed increases, friction coefficient and depth and width of wear track increase. No significant changes occurred in the wear track shape with increased sliding speed.
        4,000원
        24.
        2006.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Wear behaviors of gas atomized and extruded Al-Si alloys were investigated using the dry sliding wear apparatus. The wear tests were conducted on Al-Si alloy discs against cast iron pins and vice versa at constant load of 10N with different sliding speed of 0.1, 0.3, 0.5m/s. In the case of Al-Si alloy discs slid against the cast iron pins, the wear rate slightly increased with increasing the sliding speed due to the abrasive wear occurred between Al-Si alloy discs and cast iron pins. Conversely, in the case of cast iron discs against Al-Si alloy pins, the wear rate decreased with increasing the sliding speed up to 0.3m/s. However, the wear rate increased with increasing the sliding speed from 0.3m/s to 0.5m/s. It could be due to adhesive wear behavior and abrasive wear behavior_between cast iron discs and Al-Si alloy pins.
        4,000원
        26.
        2005.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to improve mechanical properties, the hypereutectic Al-20 wt%Si based prealloy powder was prepared by gas atomization process. Microstructure and compressibility of the atomized Al-Si powder were investigated. The average powder size was decreased with increasing the atomization gas pressure. Size of primary Si particles of the as-atomized powder was about . The as-atomized Al-Si powder such as AMB 2712 and AMB 7775 to increase compressibility and sinterability. Relative density of the mixed powder samples sintered at was reached about 96% of a theoretical density.
        4,000원
        30.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve both full density and grain refinement of Al-20 wt% Si powders without grain growth, which was considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (Equal channel angular pressing), one of the most promising method in SPD, was used for the powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 passes was conducted for 10 and 20 It was found by microhardness, compression tests and micro-structure characterization that high mechanical strength could be achieved effectively as a result of the well bonded powder contact surface during ECAP process. The SPD processing of powders is a viable method to achieve both fully density and nanostructured materials.
        4,000원
        31.
        2004.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper processing and mechanical properties of Al-20 wt% Si alloy was studied. A bulk form of Al-20Si alloy was prepared by gas atomizing powders having the powder size of 106-145 and powder extrusion. The powder extrudate was subsequently equal channel angular pressed up to 8 passes in order to refine grain and Si particle. The microstructure of the gas atomized powders, powder extrudates and equal channel angular pressed samples were investigated using a scanning electron microscope and X-ray diffraction. The mechanical properties of the bulk sample were measured by compressive tests and a micro Victors hardness test. Equal channel angular pressing was found to be effective in matrix grain and Si particle refinement, which enhanced the strength and hardness of the Al-2OSi alloy without deteriorating ductility in the range of experimental strain of 30%.
        4,000원
        32.
        2004.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of extrusion temperature on the microstructure and mechanical properties were studied in He-gas atomized alloy powders and their extruded bars using SEM, tensile testing and thermal expansion testing. The extruded bar of alloy consists of a mixed structure in which fine Si particles with a particle size below 20∼500nm and very fine compounds with a particle size below 200nm are homogeneously dispersed in Al martix with a grain size below 500nm. With increasing extrusion temperature, the microstructural scale was decreased. The ultimate tensile strength of the alloy bars has incresed with decreasing extrusion temperature from 500 to 35 and alloy extreded at 35 shows a highest tensile strength of 810 MPa due to the fine namostructure. The addition of Ni and Ce decreased the coefficients of thermal expansion and the effects of extression temperature on the thermal expansion were not significant.
        4,000원
        33.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to produce good wear resistance powder metallurgy Al-Si alloys with high strength, addition of glass forming elements of Ni and Ce in Si alloy was examined using SEM, TEM, tensile strength and wear testing. The solubility of Si in aluminum increased with increasing Ni and Ce contents for rapidly solidified powders. These bulk alloys consist of a mixed structure in which fine Si particles with a particle size below 500 nm and very fine A1Ni, A1Ce compounds with a particle size below 200 nm are homogeneously dispersed in aluminum matrix with a grain size below 600 nm. The tensile strength at room temperature for Si, SiNiCe, and SiNiCe bulk alloys extruded at 674 K and ratio of 10 : 1 is 281,521, and 668 ㎫ respectively. Especially, SiNiCe bulk alloy had a high tensile strength of 730 ㎫. These bulk alloys are good wear-resistance bel ter than commercial I/M 390-T6. Specially, attactability for counterpart is very little, about 15 times less than that of the I/M 390-T6. The structural refinement by adding glass forming elements such as Ni and Ce to hyper eutectic Si alloy is concluded to be effective as a structural modification method.d.tion method.d.
        4,000원
        34.
        2003.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of extrusion temperature on the microstructure and mechanical properties was studied in gas atomized TEX>Al81Si19 alloy powders and their extruded bars using SEM, tensile testing and wear testing. The Si particle size of He-gas atomized powder was about 200-800 nm. Each microstructure of the extruded bars with extrusion temperature (400, 450 and 50) showed a homogeneous distribution of primary Si and eutectic Si particles embedded in the Al matrix and the particle size varied from 0.1 to 5.5 . With increasing extrusion temperature from 40 to 50, the ultimate tensile strength (UTS) decreased from 282 to 236 ㎫ at 300 K and the specific wear increased at all sliding speeds due to the coarse microstructure. The fracture behavior of failure in tension testing and wear testing was also studied. The UTS of extrudate at 40 higher than that of 50 because more fine Si particles in Al matrix of extrudate at 40 prevented crack to propagate.
        4,000원
        1 2 3