PURPOSES : To enhance the accuracy of predicting the compressive strength of practical concrete mixtures, this study aimed to develop a machine learning model by utilizing the most commonly employed curing age, specifically, the 28-day curing period. The training dataset consisted of concrete mixture sample data at this curing age, along with samples subjected to a total load not exceeding 2,350 kg. The objective was to train a machine learning model to create a more practical predictive model suitable for real-world applications. METHODS : Three machine learning models—random forest, gradient boosting, and AdaBoost—were selected. Subsequently, the prepared dataset was used to train the selected models. Model 1 was trained using concrete sample data from the 28th curing day, followed by a comprehensive analysis of the results. For Model 2, training was conducted using data from the 28th day of curing, focusing specifically on instances where the total load was 2,350 kg or less. The results were systematically analyzed to determine the most suitable machine learning model for predicting the compressive strength of concrete. RESULTS : The machine learning model trained on concrete sample data from the 28th day of curing with a total weight of 2,350 kg or less exhibited higher accuracy than the model trained on weight-unrestricted data from the 28th day of curing. The models were evaluated in terms of accuracy, with the gradient boosting, AdaBoost, and random forest models demonstrating high accuracy, in that order. CONCLUSIONS : Machine learning models trained using concrete mix data based on practical and real-world scenarios demonstrated a higher accuracy than models trained on impractical concrete mix data. This case illustrates the significance of not only the quantity but also the quality of the data during the machine learning training process. Excluding outliers from the data appears to result in better accuracy for machine learning models. This underscores the importance of using high-quality and practical mixed concrete data for reliable and accurate model training.
PURPOSES : In this study, an optimal model for compressive strength prediction was derived by learning and directly comparing several machine learning models based on the same data. METHODS : Approximately 478 pieces of concrete compressive strength data were obtained to compare the performance of the machine learning models. In addition, five machine learning models were trained based on the obtained data. The performance of the learned model was compared using three performance indicators. Finally, the performance of the model trained using additional data was reviewed. RESULTS : As a result of comparing the performance of machine learning models, the XGB(eXtra Gradient Boost) model showed the best performance. In addition, as a result of the verification based on additional data, highly reliable results can be obtained if the XGB model is used to predict the compressive strength of concrete. CONCLUSIONS : If a concrete strength prediction model is derived based on a machine learning model, a highly reliable model can be derived.
PURPOSES : Construction cost estimates are important information for business feasibility analysis in the planning stage of road construction projects. The quality of current construction cost estimates are highly dependent on the expert's personal experience and skills to estimate the arithmetic average construction cost based on past cases, which makes construction cost estimates subjective and unreliable. An objective approach in construction cost estimation shall be developed with the use of machine learning. In this study, past cases of road projects were analyzed and a machine learning model was developed to produce a more accurate and time-efficient construction cost estimate in teh planning stage. METHODS : After conducting case analysis of 100 road construction, a database was constructed including the road construction's details, drawings, and completion reports. To improve the construction cost estimation, Mallow's Cp. BIC, Adjusted R methodology was applied to find the optimal variables. Consequently, a plannigs-stage road construction cost estimation model was developed by applying multiple regression analysis, regression tree, case-based inference model, and artificial neural network (ANN, DNN). RESULTS : The construction cost estimation model showed excellent prediction performance despite an insufficient amount of learning data. Ten cases were randomly selected from the data base and each developed machine learning model was applied to the selected cases to calculate for the error rate, which should be less than 30% to be considered as acceptable according to American Estimating Association. As a result of the analysis, the error rates of all developed machine learning models were found to be acceptable with values rangine from 17.3% to 26.0%. Among the developed models, the ANN model yielded the least error rate. CONCLUSIONS : The results of this study can help raise awareness of the importance of building a systematic database in the construction industry, which is disadvantageous in machine learning and artificial intelligence development. In addition, it is believed that it can provide basic data for research to determine the feasibility of construction projects that require a large budget, such as road projects.
Numerous factors contribute to the deterioration of reinforced concrete structures. Elevated temperatures significantly alter the composition of the concrete ingredients, consequently diminishing the concrete's strength properties. With the escalation of global CO2 levels, the carbonation of concrete structures has emerged as a critical challenge, substantially affecting concrete durability research. Assessing and predicting concrete degradation due to thermal effects and carbonation are crucial yet intricate tasks. To address this, multiple prediction models for concrete carbonation and compressive strength under thermal impact have been developed. This study employs seven machine learning algorithms—specifically, multiple linear regression, decision trees, random forest, support vector machines, k-nearest neighbors, artificial neural networks, and extreme gradient boosting algorithms—to formulate predictive models for concrete carbonation and thermal impact. Two distinct datasets, derived from reported experimental studies, were utilized for training these predictive models. Performance evaluation relied on metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analytical outcomes demonstrate that neural networks and extreme gradient boosting algorithms outshine the remaining five machine learning approaches, showcasing outstanding predictive performance for concrete carbonation and thermal effect modeling.
기후변화 영향으로 이상고수온, 태풍, 홍수, 가뭄 등 재난 및 안전 관리기술은 지속적으로 고도화를 요구받고 있으며, 특히 해 수면 온도는 한반도 주변에서 발생되는 여름철 적조 발생과 동해안 냉수대 출현, 소멸 등에 영향을 신속하게 분석할 수 있는 중요한 인자 이다. 따라서, 본 연구에서는 해수면 온도 자료를 해양 이상현상 및 연구에 적극 활용되기 위해 통계적 방법과 딥러닝 알고리즘을 적용하 여 예측성능을 평가하였다. 예측에 사용된 해수면 수온자료는 흑산도 조위관측소의 2018년부터 2022년까지 자료이며, 기존 통계적 ARIMA 방법과 Long Short-Term Memory(LSTM), Gated Recurrent Unit(GRU)을 사용하였고, LSTM의 성능을 더욱 향상할 수 있는 Sequence-to-Sequence(s2s) 구조에 Attention 기법을 추가한 Attention Long Short-Term Memory (LSTM)기법을 사용하여 예측 성능 평가를 진행하 였다. 평가 결과 Attention LSTM 모델이 타 모델과 비교하여 더 좋은 성능을 보였으며, Hyper parameter 튜닝을 통해 해수면 수온 성능을 개 선할 수 있었다.
모기는 감염병을 매개하는 종으로 전염병 확산 억제를 위해서는 개체수의 감시와 정확한 예측이 필요하다. 본 연구에서는 모기 개체수 및 기상 및 현장 자료를 활용해 모기 개체수 머신러닝 모델을 개발하였다. 모기 개체수는 디지털 모기 측정기(Digital Mosquito Monitoring System, DMS)의 2015 년~2022년의 5월~10월의 자료를 활용하였다. 기상 자료는 기온, 강수량, 풍속, 습도를 사용하였으며, 현장 조사 자료는 현장을 명목척도와 서열척도로 나누어 기록하여, 명목 척도의 경우 원핫 인코딩으 로 변환해 수치화하여 사용하였다. 분석에 사용된 머신러닝 모델은 Artificial Neural Network, Random Forest, Gradient Boosting Machine, Support Vector Machine이며 성능지표로 R2, RMSE를 사용하였다. 연구 결과, Gradient Boosting 모델이 R2 0.4, RMSE 22.45로 가장 좋은 성능을 나타냈다. 현장 조사 자료 를 분석에 활용하였을 때 R2는 증가하였고, RMSE는 감소하였다. 본 연구 결과 모기 개체수에 현장 조사 자료가 예측 정확도를 향상시킬 수 있음을 확인하였다.
Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure’s safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.
Consumers' online reviews have become more powerful in the Internet market. Consumers share reviews, post comments and constantly evaluate products online. In previous studies, the analysis of online reviews mainly focused on purchasing products based on consumers' own use experience, but in innovative products, it was difficult to find an analysis of product acceptor's response to product user reviews. In particular, there is no online review study of VR covered in this study. This study not only quantitatively analyzed online reviews of consumers who purchased VR products on Amazon, an online distribution site, but also qualitatively analyzed them through crawling. This study used Amazon's VR product user review, where purchases were confirmed, to select algorithms that are more likely to be matched by predicting a helpful review and presenting a predictive model. In addition, the online review extracted deep text associated with Helpful and conducted topical modeling. As a result, topics related to 1) experience in use, 2) post-product evaluation, 3) product composition and peripherals, 4) immersion, and 5) comfort were highly acceptable to potential inmates. To enhance the acceptability of innovative products through online reviews, it is not just highlighting the product advantages of VR, but also suggests that the link between smartphones and applications can bring in more potential users. Also, interworking with other peripheral devices (speakers or screens) can be predicted as a way to increase the acceptability of VR products. From a marketing perspective, this study has found targeted topics that help consumers in pioneering the VR market, which will help potential customers create the services they want.
With about 80% of the global economy expected to shift to the global market by 2030, exports of reverse direct purchase products, in which foreign consumers purchase products from online shopping malls in Korea, are growing 55% annually. As of 2021, sales of reverse direct purchases in South Korea increased 50.6% from the previous year, surpassing 40 million. In order for domestic SMEs(Small and medium sized enterprises) to enter overseas markets, it is important to come up with export strategies based on various market analysis information, but for domestic small and medium-sized sellers, entry barriers are high, such as lack of information on overseas markets and difficulty in selecting local preferred products and determining competitive sales prices. This study develops an AI-based product recommendation and sales price estimation model to collect and analyze global shopping malls and product trends to provide marketing information that presents promising and appropriate product sales prices to small and medium-sized sellers who have difficulty collecting global market information. The product recommendation model is based on the LTR (Learning To Rank) methodology. As a result of comparing performance with nDCG, the Pair-wise-based XGBoost-LambdaMART Model was measured to be excellent. The sales price estimation model uses a regression algorithm. According to the R-Squared value, the Light Gradient Boosting Machine performs best in this model.
본 연구에서는 2 016년부터 2 02 0년까지 내륙 관측소 중 안개 최다발 지역인 안동을 대상으로 XGBoost-DART 머신러닝 알고리즘을 이용하여 1 시간 후 안개 유무를 예측하였다. 기상자료, 농업관측자료, 추가 파생자료와 각 자료 를 오버 샘플링한 확장자료, 총 6개의 데이터 세트를 사용하였다. 목측으로 획득한 기상현상번호와 시정계 관측으로 측 정된 시정거리 자료를 각각 안개 유[1]무[0]로 이진 범주화하였다. 총 12개의 머신러닝 모델링 실험을 설계하였고, 안개 가 사회와 지역사회에 미치는 유해성을 고려하여 모델의 성능은 재현율과 AUC-ROC를 중심으로 평가하였다. 전체적으 로, 오버샘플링한 기상자료와 기상현상번호 기반의 예측 목표를 조합한 실험이 최고 성능을 보였다. 이 연구 결과는 머 신러닝 알고리즘을 활용한 안개 예측에 있어서, 목측으로 획득한 기상현상번호의 중요성을 암시한다.
본 연구는 교수자가 학습자를 위해 긍정적 가치탐색을 효과적으로 적용할 수 있도록 4D 프로세스 기반 학습모형을 개발하고 학습유형을 분류하여 연구하는 것을 목적으로 하였다. 긍정적 가치탐색 교육 방법은 학습자의 사고방식과 행동 변화에 효과적이다. 또한, 의미와 가치발견에 중점을 둔 강점 기반 접근을 통해 학습 참여를 증진하고 지속 가능한 학습 환경과 배움을 실현할 수 있다. 이러한 교육적 효과는 긍정적 가 치 탐색의 4D 프로세스를 토대로 한 활동으로 이루어진다. 교육 현장에서 긍정적 가치탐색 4D 프로세스 를 보다 유용하게 활용하기 위해서는 교육목표와 지향하는 역량개발에 따라 4D 프로세스에 적합한 학습 유형 분류와 체계적이고 구조화된 학습모형 개발이 필요하다. 본 연구는 4D 프로세스 기반 4가지 학습유 형을 구조화하여 학습모형을 개발하고 모형타당화를 진행하였다. 4D 프로세스 기반 학습모형 구성요소 도 출은 선행 문헌의 검토와 분석을 통해 이루어졌고, 구성요소의 구조화는 사례연구를 통해 진행하였다. 그 리고 해당 분야 전문가 검토를 통한 타당성 평가를 3차에 걸쳐 실시하였다. Discover, Dream, Design, Destiny 4D 프로세스는 탐색과 발견, 사고와 상상, 공유와 구성, 발표와 실천으로 개선되어 적용되었다. 학습에 적합하도록 보완된 4D 프로세스는 도달할 학습 목표와 개발할 학습자의 역량에 따라 탐구형, 창의 형, 과제해결형, 실천형으로 세분화하여 개발되었다. 개발된 학습모형에서의 학습유형은 다양한 교육 환경 에 맞게 긍정적 가치탐색 활동이 선택적으로 운영될 수 있다는 이점이 있다.
본 연구의 주요 목적은 회귀기반의 다양한 머신러닝 알고리즘을 개발하고 다양한 농업 분야에서 사용되는 트랙터의 연료 소비량을 예측하는 것이다. 비포장 도로주행 농업 기계중에서도 사용 비중이 가장 높은 트랙터를 선정하였다. 실제 농가에 방문하여 현업 전문가 조언을 바탕으로 연구하여 설문지를 작성하였으며, 설문 대상은 경남 사천시에 있는 농가 10곳, 진주시에 있는 농가 62곳 등, 총 72곳의 농가이다. 농작업으로는 벼농사, 보리농사, 밭농사 등이 있으며, 작업내용으로는 쟁기, 로터리, 비료살포, 베토, 모내기작업 등이 있다. 다중 회귀분석을 통해 연료 소비량 예측에 영향을 미치는 변수(마력, 기계사용연수, 경작면적, 작업 시간)를 추출하였고. 머신러닝 회귀 학습기 모형으로 학습하여 예측 모형의 성능을 검증하였다. 연료 소비량을 예측하는 모델의 성능은 결정 계수(R), RMSE (제곱 평균 제곱근 오차), MSE (평균 제곱 오차) 및 MAE (평균 절대 오차)를 포함한 4가지 통계적 품질 매개변수를 사용하여 결정되었다. 연구 결과 4가지 모델(다중회귀, 랜덤포레스트, 아다부스트, K-최근접 이웃) 중 K-최근접 이웃의 성능이 제일 높은 것으로 나타났다. 결론적으로 본 연구의 결과는 실제 농가의 연료 소비량을 예측하여 면세유 유통의 투명성을 확보하고 추후 개발 모델의 의사결정에 활용될 수 있을 것으로 기대된다.
고성능 콘크리트(HPC) 압축강도는 추가적인 시멘트질 재료의 사용으로 인해 예측하기 어렵고, 개선된 예측 모델의 개발이 필수적 이다. 따라서, 본 연구의 목적은 배깅과 스태킹을 결합한 앙상블 기법을 사용하여 HPC 압축강도 예측 모델을 개발하는 것이다. 이 논 문의 핵심적 기여는 기존 앙상블 기법인 배깅과 스태킹을 통합하여 새로운 앙상블 기법을 제시하고, 단일 기계학습 모델의 문제점을 해결하여 모델 예측 성능을 높이고자 한다. 단일 기계학습법으로 비선형 회귀분석, 서포트 벡터 머신, 인공신경망, 가우시안 프로세스 회귀를 사용하고, 앙상블 기법으로 배깅, 스태킹을 이용하였다. 결과적으로 본 연구에서 제안된 모델이 단일 기계학습 모델, 배깅 및 스태킹 모델보다 높은 정확도를 보였다. 이는 대표적인 4가지 성능 지표 비교를 통해 확인하였고, 제안된 방법의 유효성을 검증하였다.
The management of algal bloom is essential for the proper management of water supply systems and to maintain the safety of drinking water. Chlorophyll-a(Chl-a) is a commonly used indicator to represent the algal concentration. In recent years, advanced machine learning models have been increasingly used to predict Chl-a in freshwater systems. Machine learning models show good performance in various fields, while the process of model development requires considerable labor and time by experts. Automated machine learning(auto ML) is an emerging field of machine learning study. Auto ML is used to develop machine learning models while minimizing the time and labor required in the model development process. This study developed an auto ML to predict Chl-a using auto sklearn, one of most widely used open source auto ML algorithms. The model performance was compared with other two popular ensemble machine learning models, random forest(RF) and XGBoost(XGB). The model performance was evaluated using three indices, root mean squared error, root mean squared error-observation standard deviation ratio(RSR) and Nash-Sutcliffe coefficient of efficiency. The RSR of auto ML, RF, and XGB were 0.659, 0.684 and 0.638, respectively. The results shows that auto ML outperforms RF, and XGB shows better prediction performance than auto ML, while the differences between model performances were not significant. Shapley value analysis, an explainable machine learning algorithm, was used to provide quantitative interpretation about the model prediction of auto ML developed in this study. The results of this study present the possible applicability of auto ML for the prediction of water quality.
Elevators are the main means of transport in buildings. A malfunction of an elevator in operation may cause in convenience to users. Furthermore, fatal accidents, such as injuries and death, may occur to the passengers also. Therefore, it is important to prevent failure before accidents happen. In related studies, preventive measures are proposed through analyzing failures, and the lifespan of elevator components. However, these methods are limited to existing an elevator model and its surroundings, including operating conditions and installed environments. Vibration occurs when the elevator is operated. Experts have classified types of faults, which are symptoms for malfunctions (failures), via analyzing vibration. This study proposes an artificial intelligent model for classifying faults automatically with deep learning algorithms through elevator vibration data, hereby preventing failures before they occur. In this study, the vibration data of six elevators are collected. The proposed methodology in this paper removes "the measurement error data" with incorrect measurements and extracts operating sections from the input datasets for proceeding deep learning models. As a result of comparing the performance of training five deep learning models, the maximum performance indicates Accuracy 97% and F1 Score 97%, respectively. This paper presents an artificial intelligent model for detecting elevator fault automatically. The users’ safety and convenience may increase by detecting fault prior to the fatal malfunctions. In addition, it is possible to reduce manpower and time by assisting experts who have previously classified faults.
Recently, many studies have been conducted to improve quality by applying machine learning models to semiconductor manufacturing process data. However, in the semiconductor manufacturing process, the ratio of good products is much higher than that of defective products, so the problem of data imbalance is serious in terms of machine learning. In addition, since the number of features of data used in machine learning is very large, it is very important to perform machine learning by extracting only important features from among them to increase accuracy and utilization. This study proposes an anomaly detection methodology that can learn excellently despite data imbalance and high-dimensional characteristics of semiconductor process data. The anomaly detection methodology applies the LIME algorithm after applying the SMOTE method and the RFECV method. The proposed methodology analyzes the classification result of the anomaly classification model, detects the cause of the anomaly, and derives a semiconductor process requiring action. The proposed methodology confirmed applicability and feasibility through application of cases.