검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 96

        21.
        2022.10 구독 인증기관·개인회원 무료
        The “shadow zone” is defined as a region below a flow obstacle, such as a vault, in unsaturated soils. Due to the capillary discontinuity of the cavity, water saturation on the top and side of the cavity is higher than the ambient saturation. On the bottom of the cavity, however, there is a region where water saturation is lower than ambient saturation. Undoubtedly, a shadow zone may also exist below a LILW disposal vault built in subsurface soils above the water table before the vault is fully degraded. During the degradation, flow in the shadow zone is controlled by the rate of water infiltrating the degrading vault. In this study, as one of the efforts to be made for enhancing safety margin by a realistic safety assessment of the engineered vault type LILW disposal facility, the shadow zone effect is investigated by a numerical parametric study using AMBER code. The conceptual model and data were excerpted from IAEA, ISAM Vault Test Case for the liquid release design scenario. It is assumed that the nearfield barriers degrade with time. In order to compare a visible shadow zone effect, the vault degradation period is assumed to be both 500 and 1,000 years, and the shadow zone depth to be varied according to unsaturated zone lithology. It can be seen that with a shorter shadow zone (2.7 m), radionuclides arrive at the water table earlier than with a full shadow zone (55 m) due to increased advection rate in the unsaturated zone. This effect tends to be more visible in the case of a longer degradation period. For radionuclides with short residence time relative to their half-lives in the unsaturated zone, such as Tc-99 and I-129, the radionuclides are shown to come out because they will arrive sooner, thereby allowing less peak release rate, when the shadow zone effect is considered. Once the vault is completely degraded and the infiltration rate of water flowing through the vault is equal to the ambient rate, the shadow zone effect disappears. In this example calculations using IAEA ISAM Vault Test Case input parameters, it might not be shown a significant shadow zone effect. Nevertheless, when the extent of the shadow zone is determined through more sophisticated hydraulic studies in the unsaturated soils surrounding the vault, the shadow zone effect would be checked up on the realistic near-field radionuclide transport modeling in order to contribute to gaining safety margins for post-closure safety assessment of the Wolsong 2nd phase LILW disposal facility.
        22.
        2022.10 구독 인증기관·개인회원 무료
        Excavation Damaged Zone (EDZ) is created by the excavation of deposition holes and disposal tunnels at high-level radioactive waste repository that causes macro- and micro-fracturing in the surrounding rock. Since EDZ can significantly increase the hydraulic transmissivity in the rock and act as a major pathway of leaked radionuclides, consideration of EDZ in terms of safety assessment is very important. Moreover, long-term stress changes such as stress redistribution due to excavation of nearby deposition holes and disposal tunnels, thermal stress due to temperature rise, effective stress change due to pore pressure change, and swelling pressure of bentonite buffer can increase EDZ size and change in thermal-hydraulic-mechanical properties, and consequently, it can affect the transport of radionuclides. Therefore, in order to analyze the effect of long-term evolution of EDZ on radionuclide transport, it is essential to conduct numerical analysis considering the coupled Thermal-Hydraulic- Mechanical (THM) behavior in EDZ. In order to simulate the behavior of EDZ, coupled THM model was developed using the Adaptive Process-based total system performance assessment framework for a geological disposal system (APro) proposed by the Korea Atomic Energy Research Institute (KAERI). The concept of damage was introduced to demonstrate the jointed rock as a continuous medium. Among several damage models, Mazars damage model was applied in this study. Mazars damage model is the most well-known model for concrete which has similar behavior with rock as brittle material, and the input data of the model can be easily obtained through laboratory testing. If damage occurs due to the influence of thermal-hydraulic-mechanical coupled behavior at the bedrock, the properties change according to the degree of damage, and as a result, the migration of the radionuclide is affected. Based on this conceptual model, radionuclide transport model in the near field considering the long-term evolution of EDZ was developed. To investigate the effect of EDZ in terms of process-based performance assessment, the modeling results with and without EDZ were compared. Finally, by simulating the coupled THM behavior of EDZ with damage model, the effect of long-term evolution of EDZ on radionuclide transport was investigated.
        23.
        2022.10 구독 인증기관·개인회원 무료
        Considering the domestic condition with small land area and high population density, it is necessary to develop technology that can reduce the disposal area than the deep geological disposal method. For this, KAERI is developing a nuclide management process that can reduce the environmental burden of spent fuel, and establishing an evaluation model that can evaluate the performance of various process options. It is expected that an optimal option of the nuclide management process can be derived from disposal perspective by applying the evaluation model. The mass flow between processing steps of the radionuclide management process is the basic quantity required to quantify the evaluation criteria. Therefore, we built a generalized block model on GoldSim, which can simulate mass flow of various radionuclide management process options. In addition to the mass flow, this model was established to derive the amount of wastes generated by each processing step, the composition of nuclides, and radiological properties (decay heat, radioactivity, etc.). The mass flow and waste property derived from the models are closely related to the factors that determine the area of disposal concepts. Based on this, a disposal area calculation model was established as a model to evaluate the effectiveness of the radionuclide management process on environmental burden reduction. For verification, three process options, which can manage radionuclides having high decay heat (Cs, Sr) or large volume (U), were selected and evaluated as reference processes. And two disposal options, deep geological disposal and deep borehole disposal concepts were considered to be linked with the processes. As a result, it was confirmed that the disposal area could be reduced in the process separating radionuclides having high decay heat. In the future, other evaluation models for economic viability and safety will be added in the GoldSim model.
        24.
        2022.10 구독 인증기관·개인회원 무료
        The radioactive Sr-90, which is formed from beta decay, is well known as one of the most commonly detected nuclides in radioactive waste. In 2015, it was reported that Sr-90 was observed in some soil and metal wastes among the 516 drums of radioactive waste transferred from the decommissioning site of the Korea Research Reactor (in Seoul) to the disposal site (in Gyeongju). Decontamination and sequestration of radionuclides, including Sr, from nuclear waste is important because they are hazardous and harmful to the ecological environment. Immobilization of these nuclides using a zeolite framework is suitable and simple method that has been widely studied. Therefore, it is still necessary to continuously explore the thermal stability of various zeolites and environmental changes around adsorbed cations in zeolite pore for effective immobilization of these radionuclides. In this study, we observed the thermal stability in fully Sr-exchanged natrolite (Sr-NAT), one of small-pore zeolite, from room temperature to 350°C using the in-situ synchrotron X-ray powder diffraction and thermogravimetric (TGA) analysis. In addition, we investigated the structural changes in Sr-NAT during temperature increase by Rietveld analysis. Sr-NAT exhibited apparent zero thermal expansions (ZTE) with the thermal expansion coefficients of -3(1) × 10-6 at the initial stage of increasing the temperature due to dehydration process. In the section from 250°C to 300°C, a phenomenon like negative thermal expansion (NTE) occurs in which the unit cell volume of Sr-NAT decreases despite the increase in temperature. Sr-NAT maintained well its crystallinity up to 350°C, and it became amorphous at 350°C. In this study, we provide a fundamental understanding of the structural changes and thermal stability mechanism of Sr-exchaged zeolite natrolite with increasing temperature.
        25.
        2022.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The fundamental characteristics of groundwater colloids, such as composition, concentration, size, and stability, were analyzed using granitic groundwater samples taken from the KAERI Underground Research Tunnel (KURT) site by such analytical methods as inductively coupled plasma-mass spectrometry, field emission-transmission electron microscopy, a liquid chromatography-organic carbon detector, and dynamic light scattering technique. The results show that the KURT groundwater colloids are mainly composed of clay minerals, calcite, metal (Fe) oxide, and organic matter. The size and concentration of the groundwater colloids were 10–250 nm and 33–64 μg·L−1, respectively. These values are similar to those from other studies performed in granitic groundwater. The groundwater colloids were found to be moderately stable under the groundwater conditions of the KURT site. Consequently, the groundwater colloids in the fractured granite system of the KURT site can form stable radiocolloids and increase the mobility of radionuclides if they associate with radionuclides released from a radioactive waste repository. The results provide basic data for evaluating the effects of groundwater colloids on radionuclide migration in fractured granite rock, which is necessary for the safety assessment of a high-level radioactive waste repository.
        5,200원
        26.
        2022.05 구독 인증기관·개인회원 무료
        According to Article 4 and 5 of the Nuclear Safety and Security Commission (NSSC) Notice No. 2020-6, radioactive waste packages should be classified by radioactive levels, and finally permanently shipped to underground or surface disposal facilities. The level of the radioactive waste package is determined based on the concentrations of the radionuclides suggested in Article 8 of NSSC Notice No. 2021-26. Since most of the radionuclides in radioactive wastes are beta nuclides, chemical separation and quantification of the target nuclides are essential. Conventional methods to classify chemically non-volatile radionuclides such as Tc-99, Sr-90, Nb- 94, Fe-55 take a lot of time (about 5 days) and have low efficiency. An automated non-volatile nuclide analysis system based on the continuous chemical separation method of radionuclides has been developed to compensate for this disadvantages of the conventional method in this study. The features of the automated non-volatile nuclide separation system are as follows. First, the amount of secondary waste generated during the chemical separation process is very small. That is, by adopting an open-bed resin column method instead of a closed-bed resin column method, additional fittings and connector are unnecessary during the chemical separation. In addition, because the peristaltic pump is supplied for the sample and solution respectively, it is great effective to prevent cross-contamination between radioactive samples and the acid stock solution for analysis. Second, the factors that may affect results, such as solution amount, operating time and flow rate, are almost constant. By mechanically controlling the flow rate precisely, the operating time and additional factors required during the separation process can be adjusted and predicted in advance, and the uncertainty of the chemical separation process can be significantly reduced. Finally, it is highly usable not only in the continuous separation process but also in the individual separation process. It can be applied to the individual separation process because the user can set the individual sequence using the program. As a result of the performance evaluation of the automation system, recovery rates of about 80–90% and reproducibility within 5% were secured for all of the radionuclides. Furthermore, it was confirmed that the actual work time was reduced by more than 50% compared to the previous manual method. (It was confirmed that the operation time required during the separation process was reduced from 6 days to 3 days.) Based on these results, the automation system is expected to improve the safety of workers in radiation exposure, reduce human error, and improve data reliability.
        27.
        2022.05 구독 인증기관·개인회원 무료
        Appropriateness of the minimum detectable activity in the analysis of gamma radionuclides is very important. This is reason determine the time factor among the conditions of the analysis when it is rationally determined has the advantage that radioactivity analysis can be performed accurately and quickly. In this study, 100 mL of an unknown sample was diluted in Marinelli Beaker 1L to obtain, review data on gamma radiation analysis results and minimum detectable activity for each measurement time. The measurement was used High Purity Germanium detector, target nuclides are Co-57, Co-58, Y-88 and Cs-137. Since the radioactivity analysis sample will be expected to be the waste subject to selfdisposal or less during the radioactive waste classification, the minimum detectable activity standard was set based on the detection of less than the permissible activity for self-disposal for each nuclide. The measurement methods were measured by classifying it into seven categories: 1000 seconds, 3600 seconds, 10000 seconds, 30000 seconds, 80000 seconds, 100000 seconds, and 150000 seconds. The radioactivity from this measurement are Co-57 2.89 Bq·g−1, Co-58 0.19 Bq·g−1, Y-88 0.20 Bq·g−1, Cs-137 0.15 Bq·g−1, the measurement results under all conditions were similar. On the other hand, the minimum detectable activity showed values above the allowable activity for self-disposal in not but Co-58 at 1000 and 3600 seconds. Only after taking the measurement time of 10000 seconds, the result was derived Co-57 0.0095 Bq·g−1, Co-58 0.0068 Bq·g−1, Y-88 0.0052 Bq·g−1, Cs-137 0.0062 Bq·g−1, which was confirmed to less than the allowable activity for self-disposal by nuclide. Reasonably determining the measurement time in gamma radionuclide analysis is a very important issue in terms of economy of time and accuracy of measurement. Although this study cannot be said to be able to determine a reasonable measurement time for all gamma radionuclide analysis, it is hoped that research on various samples will be made to contribute to the efficient measurement of gamma radioactivity.
        28.
        2022.05 구독 인증기관·개인회원 무료
        The chelating agent and cellulose generated during the operating and decommissioning of a NPP’s form organic complexing compounds. That is accelerate the migration of radionuclide and have a bad influence of LILW disposal site. In this study, the GoldSim (RT module) program was used for the effects of radionuclide migration by organic complex compounds as described above. A scenario was derived for evaluation, and a conceptual design (Concept Art) of the GoldSim model was performed. 1) Derivation of the scenario. For the scenario, we selected a groundwater flow scenario in which groundwater flows in and radionuclides flow out after a lapse of time after the operation of the LILW disposal site in Gyeongju is closed. The inflowing groundwater comes into contact with radioactive waste and the radionuclides dissolve. The dissolved nuclides move past the drum and out of the disposal vessel due to the advection phenomenon. Radionuclides spilled from the disposal vessel pass through the silo internal filler (crushed stone) and reach the engineering barrier concrete. Radionuclides from degraded concrete are scenarios that move along the flow of groundwater to the near and far. 2) Radionuclide migration concept design. The radionuclide movement section was largely designed with Inner (Inside the silo), Near and Far. (A) Inner (Inside the silo) This section is where radionuclides move from the radiation source to the engineering barrier (silo). The detailed migration path was designed to allow radioactive nuclides to flow out and move to waste drums, solidified matrix of indrum, disposal vessel fillers, disposal vessels, silo fillers (crushed stones), and engineered barriers (concrete). The LILW disposal site in Gyeongju has a total of 6 silos. Each of the 6 silos was modeled and designed in consideration of the structural information and positional impact. (B) Near & Far. In generally design, the near is form source term to engineered barrier and far is beyond the engineered barrier. In this study, the near and far designed by radionuclide in the section from the beyond the engineering barrier (silo) to the sea through the groundwater flow through the natural rock. Especially in the case of near, the design was made by applying the position of the natural rock sampling drill hole.
        29.
        2022.05 구독 인증기관·개인회원 무료
        As the plan for the nuclear dismantlement due to the permanent shutdown of Kori-1 and Wolseong- 1 nuclear power plants has been concretized, a “movable radionuclide analysis system” is being developed that can quickly and accurately analyze large amounts of radioactive waste generated on the sites during dismantling. This system has various advantages from the perspective of strict regulations on the radioactive waste movement and social acceptability, such as preventing unexpected accidents while moving on the national highway or expressway, reducing various documents and immediate response to dismantling plans. Currently the system is being developed to be equipped with previously developed sample pretreatment and radioactivity measuring equipment and automated volatile and nonvolatile nuclide separation equipments, but to ensure mobile stability, it needs to analyze factors and establish stability standards. In the KS Q ISO/IEC 17025:2017 standard, the requirements for “facilities and environmental conditions” are a very important factor in building reliability for consumers as part of the quality guarantee for this facility. In order to meet the requirements, the technical standards of various test equipment to be installed in this facility were investigated. The physical, chemical, and radiological hazards that could affect the safety of the equipment and workers in the process of moving the equipment between nuclear power plants or between nuclear dismantling sites were derived from vibrations, rapid changes in temperature and humidity, and the spread of contamination from radioactive waste samples. Therefore, the scope of application of the law, which is the basis for securing stability during movement, was classified into two situations: movement from facility manufacturer to installation site (non-contaminated) and movement from primary to secondary use (contaminated). And in order to investigate the Nuclear Safety Act, enforcement ordinances, and radiation safety management, and to establish standards for packaging and transportation of radioactive materials, the results of transportation tests and transport details were compared and analyzed. Finally, the air suspension systems and the automatic temperature and humidity control devices were analyzed to establish standards for securing stability against the vibration and the sharp changes in the temperature and humidity, and countermeasures such as accident measures in accordance with the Enforcement Decree of the Nuclear Safety Act were also investigated.
        30.
        2022.05 구독 인증기관·개인회원 무료
        With the increase of temporarily-stored spent radioactive fuels, there is an increasing necessity for the safe disposal of high-level radioactive waste (HLW). Among various methods for the disposal of HLW, a deep geological disposal system is adapted as a HLW disposal strategy in many countries. Before the construction of a repository in deep geological condition, a performance assessment, which means the use of numerical models to simulate the long-term behavior of a multi-barrier system in HLW repository, has been widely performed to ensure the isolation of radionuclides from human and related environments for more than a million years. Meanwhile, Korea Atomic Energy Research Institute (KAERI) is developing a process-based total system performance assessment framework for a geological disposal system (APro). To improve the reliability of APro, KAERI is participating in DECOVALEX-2023 Task F, which is the international joint program for the comparison of the models and methods used in deep geological performance assessment. As a final goal of Task F, the reference case for a generic repository in fractured crystalline rock is described. The three-dimensional generic repository is located in a domain of 5 km in length, 2 km in width, and 1 km in depth, and contains an engineering barrier system with 2,500 deposition holes in fractured crystalline rock. In this study, a numerical simulation of the reference case is performed with COMSOL Multiphysics as a part of Task F. The fractured crystalline rock is described with the discrete fracture matrix (DFM) model, which expresses major deterministic fractures explicitly in the domain and minor stochastic fractures implicitly with upscaled quantities. As an output of the numerical simulation, fluid flow at steady-state and radionuclide transport are evaluated for ~106 years. The result shows that fractures dominate the transport of radionuclides due to much higher hydraulic properties than rock matrix. The numerical modeling approaches used in this study are expected to provide a basis for performance assessment of nuclear waste disposal repository located in fractured crystalline rock.
        31.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Bentonite is the most probable candidate to be used as a buffer in a deep geological repository with high swelling properties, hydraulic conductivity, thermal conductivity, and radionuclide sorption ability. Among them, the radionuclide sorption ability prevents or delays the transport of radionuclides into the nearby environment when an accident occurs and the radionuclide leaks from the canister, so it needs to be strengthened in terms of long-term disposal safety. Here, we proposed a surface modification method in which some inorganic additives were added to form NaP zeolite on the surface of the bentonite yielded at Yeonil, South Korea. We confirmed that the NaP zeolite was well-formed on the bentonite surface, which also increased the sorption efficiency of Cs and Sr from groundwater conditions. Both NaP and NaX zeolite can be produced and we have demonstrated that the generation mechanism of NaX and NaP is due to the number of homogeneous/heterogeneous nucleation sites and the number of nutrients supplied from an aluminosilicate gel during the surface modification process. This study showed the potential of surface modification on bentonite to enhance the safety of deep geological radioactive waste repository by improving the radionuclide sorption ability of bentonite.
        4,300원
        32.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the majority of countries, the upper limit of buffer temperature in a repository is set to below 100℃ due to the possible illitization. This smectite-to-illite transformation is expected to be detrimental to the swelling functions of the buffer. However, if the upper limit is increased while preventing illitization, the disposal density and cost-effectiveness for the repository will dramatically increase. Thus, understanding the characteristics and creating a database related to the buffer under the elevated temperature conditions is crucial. In this study, a strategy to investigate the bentonite found in Korea under the elevated temperatures from a mineral transformation and radionuclides retardation perspective was proposed. Certain long-term hydrothermal reactions generated the bentonite samples that were utilized for the investigation of their mineral transformation and radionuclide retardation characteristics. The bentonite samples are expected to be studied using in-situ synchrotron-based X-Ray Diffraction (XRD) technique to determine the smectite-to-illite transformation. Simultaneously, the ‘high-temperature and high-pressure mineral alteration measurement system’ based on the Diamond Anvil Cell (DAC) will control and provide the elevated temperature and pressure conditions during the measurements. The kinetic models, including the Huang and Cuadros model, are expected to predict the time and manner in which the illitization will become detrimental to the performance and safety of the repository. The sorption reactions planned for the bentonite samples to evaluate the effects on retardation will provide the information required to expand the current knowledge of repository optimization.
        4,000원
        1 2 3 4 5