검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 338

        21.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to the rapid growth of electrical vehicle and portable electronics markets, huge amount of the rare earth elements (REEs) and lithium have been required for the manufacturers globally. Moreover, after life time of the battery pass, the waste batteries containing valuable metal resources should be recycled due to competitions between the countries who manufacturing the batteries. Therefore, the REEs and lithium recoveries from the e-waste and wastewaters become issue recently. However, the commercialized technology for the valuable metal recovery is limited. In this study, the uses of the REEs and other valuable metal resources such as lithium, uranium, and gold and there recoverying methods according to the different water conditions were investigated and summarized. Moreover, the possible expectations and suggestions for the future application of the valuable resource recovery were conducted as a review.
        4,000원
        26.
        2022.10 구독 인증기관·개인회원 무료
        In the field of 3H decontamination technology, the number of patent applications worldwide has been steadily increasing since 2012 after the Fukushima nuclear accident. In particular, Japan has a relatively large number of intellectual property rights in the field of 3H processing technology, and it seems to have entered a mature stage in which the growth rate of patent applications is slightly reduced. In Japan, tritium is being decontaminated through the Semi-Pilot-class complex process (ROSATOM, Russia) using vacuum distillation and hydrogen isotope exchange reaction, and the Combined Electrolysis Catalytic Exchange (CECE, Kurion, U.S.) process. However, it is not enough to handle the increasing number of HTOs every year, so the decision to release them to the sea has been made. Another commercial technology in foreign countries is the vapor phase catalyst exchange process (VPCE) in operation at the Darlington Nuclear Power Plant in Canada. This process is a case of applying tritium exchange technology using a catalyst in a high-temperature vapor state. The only commercially available tritium removal technology in Korea is the Wolseong Nuclear Power Plant’s Removal Facility (TRF). However, TRF is a process for removing HTO from D2O of pure water, so it is suitable only for heavy water with high tritium concentration, and is not suitable for seawater caused by Fukushima nuclear power plant’s serious accident, and surface water and groundwater contaminated by environmental outflow of tritium. Until now, such as low-temperature decompression distillation method, water-hydrogen isotope exchange method, gas hydrate method, acid and alkali treatment method, adsorption method using inorganic adsorbent (zeolite, activated carbon), separator method using electrolysis, ion exchange adsorption method using ion exchange resin, etc. have been studied as leading technologies for tritium decontamination. However, any single technology alone has problems such as energy efficiency and processing capacity in processing tritium, and needs to be supplemented. Therefore, in this study, four core technologies with potential for development were selected to select the elemental technology field of pilot facilities for treating tritium, and specialized research teams from four universities are conducting technology development. It was verified that, although each process has different operating conditions, tritium removal performance is up to 60% in the multi-stage zeolite membrane process, 30% in the metal oxide & electrochemical treatment process, 43% in the process using hydrophilic inorganic adsorbent, and 8% in the process using functional ion exchange resin. After that, in order to fuse with the pretreatment process technology for treating various water quality tritium contaminated water conducted in previous studies, the hybrid composite process was designed by reflecting the characteristics of each technology. The first goal is to create a Pilot hybrid tritium removal facility with 70% tritium removal efficiency and a flow rate of 10 L/hr, and eventually develop a 100 L/hr flow tritium removal system with 80% tritium removal efficiency through performance improvement and scale-up. It is also considering technology for the postprocessing process in the future.
        27.
        2022.10 구독 인증기관·개인회원 무료
        Regulations on the concentration of boron discharged from industrial facilities, including nuclear power plants, are increasingly being strengthened worldwide. Since boron exists as boric acid at pH 7 or lower, it is very difficult to remove it in the existing LRS (Liquid Radwaste System) using RO and ion exchange resin. As an alternative technology for removing boron emitted from nuclear power plants, the electrochemical boron removal technology, which has been experimentally applied at the Ringhal Power Plant in Sweden, was introduced in the last presentation. In this study, the internal structure of the electrochemical module was improved to reduce the boron concentration to 5 mg/L or less in the 50 mg/L level of boron-containing waste liquid. In addition, the applicability of the electrochemical boron removal technology was evaluated by increasing the capacity of the unit module to 1 m3/hr in consideration of the actual capacity of the monitor tank of the nuclear power plant. By applying various experimental conditions such as flow rate and pressure, the optimum boron removal conditions using electrochemical technology were confirmed, and various operating conditions necessary for actual operation were established by configuring a concentrated water recirculation system to minimize secondary waste generation. The optimal arrangement method of the 1 m3/hr unit module developed in this study was reviewed by performing mathematical modeling based on the actual capacity of monitor tank and discharge characteristics of nuclear power plant.
        28.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, using the developed pilot device, an experiment was conducted with groundwater according to the calcium carbonate concentration and silica concentration for a certain period of time to determine the degree of RO membrane contamination according to water quality. In addition, using wastewater with severe fouling of raw water, the treatment efficiency is compared through an experiment with a pilot device, the operation progress is evaluated for the scale effect, and the stability and convenience of the developed product are considered.
        4,000원
        29.
        2022.05 구독 인증기관·개인회원 무료
        The purpose of this study was to effectively purify U-contaminated soil-washing effluent using a precipitation/distillation process, reuse the purified water, and self-dispose of the generated solid. The U ions in the effluent were easily removed as sediments by neutralization, and the metal sediments and suspended soils were flocculated–precipitated by polyacrylamide (PAM). The precipitate generated through the flocculation–precipitation process was completely separated into solid–liquid phases by membrane filtration (pore size < 45 μm), and Ca2+ and Mg2+ ions remaining in the effluent were removed by distillation. Even if neutralized or distilled effluent was reused for soil washing, soil decontamination performance was maintained. PAM, an organic component of the filter cake, was successfully removed by thermal decomposition without loss of metal deposits including U. The uranium concentration of the residual solids after distillation is confirmed to be less than 1 Bq·g−1, so it is expected that the self-disposal of the residual solids is possible. Therefore, the treatment method of U-contaminated soil-washing effluent using the precipitation/distillation process presented in this study can be used to effectively treat the washing waste of U-contaminated soil and self-dispose of the generated solids.
        30.
        2022.05 구독 인증기관·개인회원 무료
        After the Fukushima accident in 2011, a huge amount of radioactively contaminated water is being generated by cooling the melted fuel of units 1, 2 and 3. Most of contaminated water is seawater and underwater containing not only salt elements but also nuclear fission products with radioactivity. To treat the contaminated water, Cs/Sr removal facilities such as KURION and SARRY are being operated by TEPCO. Additionally, three ALPS facilities are on operation to meet the regularity standards for discharge to the sea. However, massive secondary wastes such as Zeolite, sludge and adsorbent is being generated by these facilities for liquid water treatment. The secondary wastes containing various radionuclide with Cs and Sr is difficult to store due to highly radioactive concentration and corrosive properties. In Japan, a variety of technologies such as GeoMelt vitrification, In-Can vitrification and CCIM vitrification is considered as a promising solution. In this study, they were reviewed, and the advantage and disadvantage of each technology were evaluated as the candidate technologies for thermal treatment of sludge radwaste.
        37.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An extract of fresh guava leaves (Psidium guajava) was used as a green carbon precursor to fabricate blue fluorescent carbon quantum dots (GCQDs) by hydrothermal process. The GCQDs show bright blue fluorescence emission under UV light with an excitation wavelength of 350 nm and emission at 450 nm. The physical structure of GCQDs was characterized by Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), High-resolution transmission electron microscope (HR-TEM) and atomic force microscopy (AFM). GCQDs 80 μg inhibited the growth of waterborne pathogens Escherichia coli and Salmonella typhi. We also investigated the catalytic activity of the GCQDs on the removal of two azo dyes, namely Congo red and bromophenol blue, with and without NaBH4. The GCQDs showed an excellent reduction of color intensity of both dyes without NaBH4 within 30 min of treatment.
        4,200원
        1 2 3 4 5