검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 30

        21.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ethanol washing with distillation as a cleanup process of polycyclic aromatic hydrocarbon(PAH)-contaminated soil was investigated in this study. A multistage ethanol washing with distillation process was applied to three different types of soil, i.e., sandy soil, alluvial soil, and clay with the initial concentration of benzo(a)pyrene 10 mg/kg, benz(a)anthracene 250 mg/kg, and pyrene 100 mg/kg soil. Ethanol was selected as washing solvent because of its high PAH removal efficiency, low cost, and non-toxicity comparing to the other solvent such as isopropyl alcohol and sodium dodecyl sulfate. The satisfactory results (i.e. lower than benzo(a)pyrene 1 mg/kg, pyrene 10 mg/kg, benz(a)anthracene 25 mg/kg, which are the Canada or the Netherlands soil standard) for three types of soils were obtained by at most five-six times washing. It was suggested that organic content in soil decreased the removal efficiency by ethanol washing.
        4,000원
        22.
        2018.01 KCI 등재 서비스 종료(열람 제한)
        A continuous process of persulfate oxidation and citric acid washing was investigated for ex-situ remediation of complex contaminated soil containing total recoverable petroleum hydrocarbons (TRPHs) and heavy metals (Cu, Pb, and Zn). The batch experiment results showed that TRPHs could be degraded by Fe2+ activated persulfate oxidation and that heavy metals could be removed by washing with citric acid. For efficient remediation of the complex contaminated soil, two-stage and three-stage processes were evaluated. Removal efficiency of the two-stage process (persulfate oxidation - citric acid washing) was 83% for TRPHs and 49%, 53%, 24% for Cu, Zn, and Pb, respectively. To improve the removal efficiency, a three-stage process was also tested; case A) water washing - persulfate oxidation - citirc acid washing and case B) persulfate oxidation - citric acid washing (1) - citric acid washing (2). In case A, 63% of TRPHs, 73% of Cu, 60% of Zn, and 55% of Pb were removed, while the removal efficiencies of TRPHs, Cu, Pb, and Zn were 24%, 68%, 62%, and 59% in case B, respectively. The results indicated that case A was better than case B. The three-stage process was more effective than the two-stage process for the remediation of complex-contaminated soil in therms of overall removal efficiency.
        23.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        This study was aimed at determining the changes in heavy metal removal efficiency at different acid concentrations in a micro-nanobubble soil washing system and pickling process that is used to dispose of heavy metals. For this purpose, the initial and final heavy metal concentrations were measured to calculate the heavy metal removal efficiency 5, 10, 20, 30, 60, and 120 min into the experiment. Soil contaminated by heavy metals and extracted from 0~15 cm below the surface of a vehicle junkyard in the city of U was used in the experiment. The extracted soil was air-dried for 24 h, after which a No. 10 (2 mm) was used as a filter to remove large particles and other substances from the soil as well as to even out the samples. As for the operating conditions, the air inflow rate in the micro-nano bubble soil washing system was fixed at 2 L/min,; with the concentration of hydrogen peroxide being adjusted to 5%, 10%, or 15%. The treatment lasted 120 min. The results showed that when the concentration of hydrogen peroxide was 5%, the efficiency of Zn removal was 27.4%, whereas those of Ni and Pb were 28.7% and 22.8%, respectively. When the concentration of hydrogen peroxide was 10%, the efficiency of Zn removal was 38.7%, whereas those of Ni and Pb were 42.6% and 28.6%, respectively. When the concentration of hydrogen peroxide was 15%, the efficiency of Zn removal was 49.7%, whereas those of Ni and Pb were 57.1% and 42.6%, respectively. Therefore, the efficiency of removal of all three heavy metals was the highest when the hydrogen peroxide concentration was 15%.
        24.
        2016.11 서비스 종료(열람 제한)
        중금속에 의한 토양 오염이 국가적인 환경문제로 대두되면서 오염된 토양의 정화 기술 개발이 활발히 진행되고 있다. 최근 (구) 장항제련소의 중금속 오염부지에 대한 1차 정화사업이 완료되었고, 2차 사업이 진행되면서 토양세척기술이 가장 현실적인 중금속 오염 토양을 정화할 수 있는 기술로 인식되고 있다. 그러나, 토양세척공정은 75μm 미만의 미세토양에 대해서는 중금속의 화학적 추출이 거의 일어나지 않는다고 알려져 있어, 논토양과 같이 미세토 함량이 높은 부지에 대해서는 적용하더라도 그 효율이 낮아 폐기물로 버려지는 토양의 양이 많은 실정이다. 이에 본 연구에서는 미세토양에서 중금소의 추출 효율을 높이기 위해 중금속이 토양에서 어떠한 결합형태를 가지고 있는지와 중금속의 광물학적 특성을 고려하여 새로운 토양세척 공정을 제안하였다. 결합형태 분석을 통해 토양과 중금속의 결합강도에 대한 정보를 알 수 있으며, 기기분석을 통한 중금속의 광물학적 특성 분석을 통해 해당 중금속의 용해도에 대한 정보를 확인할 수 있다. 이 연구를 통해 제안된 공정을 비소, 납, 아연과 같은 중금속 오염 토양의 실험실 규모 정화에 적용하여 처리 효율 평가하였다. 비소의 경우 미세토만을 대상으로 실험한 결과 우려기준 이내로 정화할 수 있음을 확인하였다.
        25.
        2011.10 KCI 등재 서비스 종료(열람 제한)
        The objectives of this study are to examine the processing of oils contamination soil by means of using a micronano-bubble soil washing system, to investigate the various factors such as washing periods, the amount of micro-nano bubbles generated depending on the quantity of acid injection and quantity of air injection, to examine the features involved in the elimination of total petroleum hydrocarbons (TPHs) contained in the soil, and thus to evaluate the possibility of practical application on the field for the economic feasibility. The oils contaminated soil used in this study was collected from the 0~15 cm surface layer of an automobile junkyard located in U City. The collected soil was air-dried for 24 hours, and then the large particles and other substances contained in the soil were eliminated and filtered through sieve No.10 (2 mm) to secure consistency in the samples. The TPH concentration of the contaminated soil was found to be 4,914~5,998 mg/kg. The micronano-bubble soil washing system consists of the reactor, the flow equalization tank, the micronano- bubble generator, the pump and the strainer, and was manufactured with stainless material for withstanding acidic phase. When the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 30 minutes were respectively identified as 4,931 mg/kg (18.9%), 4,678 mg/kg (18.9%) and, 4,513 mg/kg (17.7%). And when the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 120 minutes were respectively identified as4,256 mg/kg (22.3%), 4,621 mg/kg (19.7%) and 4,268 mg/kg (25.9%).
        26.
        2010.02 KCI 등재 서비스 종료(열람 제한)
        Ultrasound and Surfactant aided soil washing process has been shown to be an effective method to remove diesel from soils. The use of surfactants can improve the mobility of diesel in soil-water systems by increasing solubility of adsorbed diesel into surfactant micelles. However, a large amount of surfactant is required for treatment. In addition, synthetic surfactants, specially anionic, are more toxic and the surfactant wastewater is hard to treat by conventional wastewater treatments even by AOPs. Ultrasound improves desorption of the diesel adsorbed on to soil. The mechanisms are based on physical breakage of bonds by hot spot, directly impact onto soil particle surface, the fragmentation of long-chain hydrocarbons by micro-jet and microstreaming in the soil pores. The use of ultrasound as an enhancement method in both anionic and nonionic surfactant aided soil-washing processes were studied. And all experiments were examined proceeded under CMC surfactant concentration, frequency 35 khz, power 400 W, Soil-water ratio 1:3(wt%), particle size 0.24 ~ 2mm and initial diesel concentration. 20,000 mg/kg. Combination with ultrasound showed significant enhancements on all the processes. Especially, nonionic surfactant Triton-X100 with ultrasound showed remarkable enhancements and diesel removal rate enhanced by ultrasound helps desorpting of surfactant adsorbed onto soils which prevented decreasing surfactant activity.
        27.
        2009.04 KCI 등재 서비스 종료(열람 제한)
        The removal characteristics of total petroleum hydrocarbons (TPHs) and heavy metals in contaminated soils with ultrasonic washing have been studied. The ultrasonic washing was evaluated on a laboratory scale. In this investigation, the effects of factors such as ultrasonic frequency, power intensity, duration of irradiation, contents of the TPHs and heavy metals and mixing ratios between the contaminated soils and water, were considered. Experimental results suggested that the rates for contaminant extraction of the TPHs and heavy metals in the contaminated soil increased considerably with the ultrasonic washing. Therefore, the ultrasonic washing has previously been to be an effective method to remediate the contaminated soils with the TPHs and heavy metals.
        28.
        2008.02 KCI 등재 서비스 종료(열람 제한)
        This study has been carried out to examine the feasibility of soil washing process for reducing arsenic contamination level of soil around Dalchên Mine. The results of physicochemical tests of the target soil showed that pH was weak alkalic (pH ~- 7.8), soil texture was coarse sand, and organic contents (5.7%) and CEC (Cation exchange capacity; 21.5 meq/100 g) were similar with those of soils generally found in Korea. Contamination levels of arsenic were found to over 201 mg/kg which exceed the Korea standard levels of countermeasure and concern. To investigate chemical partitioning of heavy metals, sequential extraction procedures were adopted and it was found that arsenic was predominantly associated with the residual fraction among five fractional forms as much as over 85%, which is demonstrating that only less than 15% of all might be vulnerable to a selected washing agents. Among 6 kinds of washing agents applied on the screening for arsenic-contaminated soil, HCl and H3PO4 solution were selected as promising washing agents. In comparison with HCl and H3PO4 solutions for arsenic washing by kinetic experiment in the change of pH, soil-solution ratio, temperature, and washing solution concentration, H3PO4 solution was determined to best one of agents tested, which showed faster washing rate than HCl to accomplish regulatory goal.
        30.
        2000.10 KCI 등재 서비스 종료(열람 제한)
        A study on the removal of Pb ion from Pb-contaminated soil was carried out, using ex-situ extraction process. Tartaric acid (TA) and iminodiacetic acid sodium salt (IDA) as a washing agent were evaluated as a function of concentration, reaction time, mixing ratio of washing agent and recycling of washing agent. TA showed a better extraction performance than IDA. The optimum washing condition of TA and IDA were in the ratio of 1 : 15 and 1 : 20 between soil and acid solution during 1 hr reaction. The total concentrations of Pb ion by TA and IDA at three repeated extraction, were 368.8 ppm and 267.5 ppm, respectively. The recovery of Pb ion from washing solution was achieved by adding calcium hydroxide and sodium sulfide, form the precipitation of lead hydroxide and lead sulfide, and optimum amounts of sodium sulfide and calcium hydroxide were 7 g/ℓ for the TA washing solution and 4 g/ℓ , 5 g/ℓ for the IDA washing solution, respectively. The efficiency of recycle for TA and IDA washing solution were 78.8%, 95.1% and 89.2%, 96.6%, at third extractions under Na2S and Ca(OH)2, respectively.
        1 2