검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 652

        381.
        2006.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon-ceramic composites were fabricated by using fly ash and PANOX fibers as reinforcement. Fly ash, because of its small size particles e.g. submicron to micron level can be effectively dispersed along with fibrous reinforcements. Phenolic resin was used as carbon precursor. Both dry as well as wet methods were used for forming composites. The resulting composites were characterized for their microstructure, thermal and mechanical properties. The microstructure and mechanical properties of composites are found to be dependent on type of the fly ash, fibrous reinforcements as well as processing parameters. The addition of fly ash improves hardness and the fibers, which get co-carbonized on heat treatment, increase the flexural strength of the carbon-ceramic composites. Composites with dual reinforcement exhibit about 30-40% higher strength as compared to the composites made with single reinforcement, either with fly ash as filler or with chopped fibers.
        4,000원
        382.
        2006.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Friction welding of particulate reinforced aluminum composites was performed and the following conclusions were drawn from the study of interfacial bonding characteristics and the relationship between experimental parameters of friction welding and interfacial bond strength. Highest bonded joint efficiency (HBJE) approaching was obtained from the post-brake timing, indicating that the bonding strength of the joint is close to that of the base material. For the pre-brake timing, HBJE was . Most region of the bonded interface obtained from post-brake timing exhibited similar microstructure with the matrix or with very thin, fine-grained layer. This was attributed to the fact that the fine-grained layer forming at the bonding interface was drawn out circumferentially in this process. Joint efficiency of post-brake timing was always higher than that of pre-brake timing regardless of rotation speed employed. In order to guarantee the performance of friction welded joint similar to the efficiency of matrix, it is necessary to push out the fine-grained layer forming at the bonding interface circumferentially. As a result, microstructure of the bonded joint similar to that of the matrix with very thin, fine-grained layer can be obtained.
        4,000원
        387.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bending and tensile properties of 2D cross-ply C/C composites with processing heat treatment temperature (HTT) are evaluated. C/C composites used are made from two types of PAN based T700 and M40 carbon fibers with phenolic resin as carbon matrix precursor. Both the types of composites are heat treated at different temperatures (ranging from 750 to 2800℃) and characterized for bending and tensile properties. It is observed that, real density and open porosity increases with HTT, however, bulk density does show remarkable change. The real density and open porosity are higher in case T-700 carbon fiber composites at 2800℃, even though the density of M40 carbon fiber is higher. Bending strength is considerably greater than tensile strength through out the processing HTT due to the different mode of fracture. The bending and tensile strength decreases in both composites on 1000℃ which attributed to decrease in bulk density, thereafter with increase in HTT, bending and tensile strength increases. The maximum strength is in T700 fiber based composites at HTT 1500℃ and in M40 fiber based composites at HTT 2500℃. After attending the maximum value of strength in both types of composite at deflection HTT, after that strength decreases continuously. Decrease in strength is due to the degradation of fiber properties and in-situ fiber damages in the composite. The maximum carbon fiber strength realization in C/C composites is possible at a temperature that is same of fiber HTT. It has been found first time that the bending strength more or less 1.55 times higher in T700 fiber composites and in M40 fiber composites bending strength is 1.2 times higher than that of tensile strength of C/C composites.
        4,000원
        388.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This work is to present a new synthesis of metallic glass (MG)/metallic glass (MG) composites using gas atomization and spark plasma sintering (SPS) processes. The MG powders of (CuA) and (NiA) as atomized consist of fully amorphous phases and present a different thermal behavior; (glass transition temperature) and (crystallization temperature) are 716K and 765K for the Cu base powder, but 836K and 890K for the Ni base ones, respectively. SPS process was used to consolidate the mixture of each amorphous powder, being in weight. The resultant phases were Cu crystalline dispersed NiA matrix composites as well as NiA phase dispersed CuA matrix composites, depending on the SPS temperatures. Effect of the second phases embedded in the MG matrix was discussed on the micro-structure and mechanical properties.
        4,000원
        389.
        2005.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon/Carbon Composites due to their far superior thermo-mechanical properties are used in a number of demanding applications. However, the material still is used only in specific high tech applications with few exceptions in general industrial applications. The material is extremely expensive and the major challenge is to reduce its cost. Various innovative processing routes are outlined to reduce the cost of processing.
        4,000원
        391.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the effects of atmospheric oxygen plasma treatment of carbon fibers on mechanical interfacial properties of carbon fibers-reinforced epoxy matrix composites was studied. The surface properties of the carbon fibers were determined by acid/base values, Fourier-transform infrared spectrometer (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses. Also, the crack resistance properties of the composites were investigated in critical stress intensity factor (KIC), and critical strain energy release rate mode II (GIIC) measurements. As experimental results, FT-IR of the carbon fibers showed that the carboxyl/ester groups (C=O) at 1632 cm-1 and hydroxyl group (O-H) at 3450 cm-1 were observed for the plasma treated carbon fibers, and the treated carbon fibers had the higher O-H peak intensity than that of the untreated ones. The XPS results also indicated that the O1S/C1S ratio of the carbon fiber surfaces treated by the oxygen plasma led to development of oxygen-containing functional groups. The mechanical interfacial properties of the composites, including KIC (critical stress intensity factor) and GIIC (critical strain energy release rate mode II), were also improved for the oxygen plasma-treated carbon fibersreinforced composites. These results could be explained that the oxygen plasma treatment played an important role to increase interfacial adhesions between carbon fibers and epoxy matrix resins in our composite system.
        4,000원
        392.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Anti-oxidation coatings are the key technique for carbon/carbon (C/C) composites used as the thermal structural materials. The microstructure and oxidation behavior of several kinds of high-performance ceramic coatings for C/C composites prepared in Northwestern Polytechnical University were introduced in this paper. It showed that the ceramic coatings such as SiC, Si-MoSi2, SiC-MoSi2, Al2O3-mullite-SiC and SiC/yttrium silicate/glass coatings possessed excellent oxidation resistance at high temperatures, and some of these coatings were characterized with excellent thermal shock resistance. The SiC-MoSi2 coating system has the best oxidation protective property, which can effectively protect C/C composites from oxidation up to 1973 K. In addition, the protection and failure reasons of some coatings at high temperature were also provided.
        4,000원
        395.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum matrix composites strengthened by the quasi-crystalline (QC) phase were developed in the present study. The icosahedral phase was produced by gravity casting and subsequent heat treatment. The mechanical milling process was utilized in order to produce the Al/QC composite powders. The microstructures of the composite powders were examined by optical microscopy (OM) and scanning electron microscopy (SEM). The composite powders were subsequently canned, degassed and extruded in order to produce the bulk composite extrusions with various volume fractions of QC. The microstructure and mechanical properties of the extrusions were examined by OM, SEM, Vickers hardness tests and compression tests. It was found that the microstructures of the Al/QC composites were uniform and the mechanical properties could be significantly improved by the addition of the QC phase.
        4,000원
        397.
        2005.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The study of mechanical properties and fracture behaviour of carbon/carbon composites is significant to its application and development. These are dependent on microstructure and properties of reinforcing fibers and matrix, fiber/matrix interface and porosity/cracks present in the composites. In the present studies high-density carbon/carbon composites have been prepared using PAN and various pitch based carbon fibers as reinforcements and pitch as matrix with repeated densification cycles using high-pressure impregnation and carbonization technique. Scanning electron microscopy has been used to study the fracture behaviour of the highly dense composites and correlated with structure of the composites. The geometry of reinforcement and presence of unfilled voids/cracks was found to influence the path of crack propagation and thereby the strength of composites. The type of stresses (tensile or compressive) accumulated also plays an important role in fracture of composites.
        4,000원
        398.
        2005.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The main goal of this work is to study the effects of temperature and volume fraction of fiber on the Charpy impact test with GF/PP composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of 60℃ to -50℃ by impact test. The critical fracture energy increased as the fiber volume fraction ratio increased. The critical fracture energy shows a maximum at ambient temperature and it tends to decreases as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.
        4,000원
        400.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon-ceramic composites refer to a special class of carbon based materials which cover the main drawbacks of carbon, particularly its proneness to air oxidation, while essentially retaining its outstanding properties. In the present paper, the authors report the results of a systematic study made towards the development of C-SiC-B4C composites, which involves the effects of compositional parameters, namely, carbon-to-ceramic and ceramic-to-ceramic ratios, on the oxidation behaviour as well as other characteristics of these composites. The C-SiC-B4C composites, heat-treated to 1400℃, have shown that their oxidation behaviour at temperatures of 800~1200℃ depends jointly on the total ceramic content and the SiC : B4C ratio. Good compositions of C-SiC-B4C composites exhibiting zero weight loss in air at temperatures of 800~1200℃ for periods of 4~9 h, have been identified. Composites with these compositions undergo a weight gain or a maximum weight loss of less than 3% during the establishment of a protective layer at the surface of carbon in a period of 1~6 h. Significant improvement in the strength of C-SiC-B4C composites has been observed which increases with an increase in the total ceramic content and also with an increase in the SiC : B4C ratio.
        4,000원