The microstructure evolution during sintering of a compact being composed of three layers of (WC-15%Co)/Fe powder mixture with different Fe contents has been observed. The Fe contents in the respective (WC-15%Co)/Fe layers were varied by 20%. 50%, and 90% in sequence by volume from a top layer to a bot- tom layer. The sintering temperatures and times were varied from 110 to 125 and from 1 h to 4 h, The compact layer was not densified below 120 in 4 h. Appropriate sintering temperature and time conditions for making a multi-layered hard metal compact were determined as 125 and 3 h, respectively.
본 논문에서는 1673K에서 소결한 PSZ/Ni 복합재에 대한 종 탄성계수, 파괴강도, 파괴에너지 등의 기계적 특성을 평가하기 위해, 개량형 소형펀치시험을 행한 결과에 대해 논의한다. 또한 파면관찰과 AE법을 통해 이들 재료의 고온환경에서의 미시파괴과정도 조사하였다. 시험온도는 293K, 1073K, 1273K, 1473K의 4종류로 하였으며, PSZ/Ni 복합재료의 체적 조성비도 80/20, 60/40, 40/60, 20/80의 4종류이다. 이들 실험결과로부터, 1073K이상의 고온에서 Ni 함량이 60%인 PSZ/Ni 복합재가 파괴강도 및 파괴에너지가 가장 우수한 것을 알았다. 파면관찰에 의하면 이 재료의 조성비에서 파고거동이 취성으로부터 연성으로 천이하는 것을 확인할 수 있었다.
The dispersion of WC grains Into the interior of an eutectic liquid has been studied by superimposing the eutectic WC-85wt.%Co liquid on the top surface of presintered WC-l0wt.%Co alloy compacts. The heavy WC grains diffused into the interior of liquid from the WC-l0wt.%Co compacts. According to increasing the treating temperatures and times, the dispersion distance from WC-l0wt.%Co substrates increased. The fine WC grains diffused into the liquid faster than the coarse WC grains. The high microstructural stability of WC-Co alloys having the heavier WC grains dispersed in a lighter Co-rich liquid was attributed to Brownian motion of WC grains in liquid. The motion of WC grains in the liquid appears to be same with the colloid(the disperse phase) in a dispersing medium. The dihedral angle of 0 degree of WC-Co at. toy seems one of key parameters, which enables the WC-Co alloys to have high structural stability without settling the WC grains during liquid phase sintering.
Cobalt and VC powders were ball milled with M2 grade high speed steel powders under various ball to powder ratios. The powders milled under higher ball to powder ratio become finer, more irregular and have a broader size distribution, and thus possess a lower compressibility and a better sinterability regarding densification. Increasing the ball to powder ratio lowered the sintering temperature to obtain the density level necessary to isolate all the pores. Lowering the sintering temperature is very critical to maintain fine microstructure since grain and carbide coarsening are accelerated by higher sintering temperature due to more liquid phase formation. The powders obtained by ball milling at 20 to 1 ratio has the lowest compressibility but has the best sinterability, almost compatible to unmilled pure M2 powders. A sintered body over 97% theoretical density with fine microstructures having average grain size of ~10 microns was obtained from the powder by sintering at 1260 for 1 hour in vacuum. XRD results indicate that two types of carbides are mainly present in the sintered structure, MC and type. The MC type carbides are more or less round shaped and mainly located at the grain boundaries whereas the type are angular shaped and mainly located inside the grains.
The effect of ball milling on the pressureless sintering of MoSi was investigated. Ball milling was conducted at 70 rpm for 72 hours using different balls and vessels: one used tungsten carbide balls in a plastic vessel(referred as B-powder) and the other stainless steel ball in a stainless steel vessel(referred as C- powder). The powder was compacted with 173MPa and subsequently sintered at the temperature range of 1150 and 1450 in H, atmosphere. Sintered density was measured and scanning electron micrograph was observed. Over 90% of the theoretical density was attained at 1250 within 10 minutes for C-powders, while the similar densification required a sintering temperature of 1450 for B-powders. Such a difference in sinterability between B and C-powders was discussed in terms of the effect of particle size reduction and activated sintering caused by Ni and/or Fe introduced during ball milling.
The densification of the compacts of pure Co, Fe+50%.Co and Fe+25% Co sintered under H gas or in vacuum was investigated. The effects of AL, Nb, Ti, and V additions on the densification were also studied. The sintered compact of Co was fully-dense when the density of the compact was lower than . However, above , it was never fully-dense regardless of sintering atmosphere, temperature, and time. The densification of sintered compacts of Fe-50% Co and Fe-25% Co were always incomplete. While the addition of AL made all compacts fully-dense, the addition of Ti was effective for the compacts of Co and Fe-25% Co. V was effective only for the Fe-25% Co. These results tell us that the particle size of Co powder, the amount of Fe, and the amount of additives forming stable oxides play on important role for the complete densification. Therefore it is desirable to reduce or eliminate the equilibrium pressure of HO or CO in isolated pores to obtain a fully-dense sintered compact.
15 vol% ZrO2가 첨가된 Na β"-alumina 복합재를 1단계와 2단계 소결법을 사용하여 제조하였다. ZrO2는 효율적으로 Na β"-alumina에 비해 약 51%정도 증가하였으며 열처리 시간에 따른 Klc값의 큰 변화는 관찰되지 않았다. 그러나 이들 복합재의 굽힘 강도 값은 열처리 시간이 60분을 초과함에 따라 점차 감소하는 경향을 나타냈다. 2단계 소결법으로 제조한 Na 복합재의 전기 전도도는 1단계 소결법으로 제조된 시편과 달리 열처리 시간에 따른 전도도 값의 분산성이 거의 없었으며, 그 값은 다결정 Na β"-alumina의 전도도와 거의 동일하였다. Na 복합재 및 이온교환법에 의해 제조한 K 복합재의 전기전도도 값은 300˚C에서 각각 1.3x 10-1과 5.9x20-2Scm-1로 측정되었다.2Scm-1로 측정되었다.
The effect ofgas sintering atmosphere on the carbon content and mechanical properties during the metal injection molding process of carbonyl iron-nickel powder was studied. The carbon content of the specimen after debinding in the pureatmosphere appeared 0.78 wt%. After showing the maximum value of 1.48 wt.% in the debinding atmosphere of 10%gas mixture, the carbon content of the debinded specimen decreased gradually with increasing thecontent in thegas mixture. The carbon contents of the sintered specimen were 0.46~0.63wt% in Na gas atmosphere, while they appeared extremely low above 40%gas atmosphere. The relative sintered density increased abruptly from 88~90% to 93~96% with the addition of Ni, while the density nearly unchanged above 2% Ni addition. The sintered density increased with increasing the fraction ofgas mixture. Tensile strength and hardness increased, and elongation decreased with increasing carbon and Ni content. In spite of high carbon content of 0.63 wt%, the superior elongation value of 10% was shown.
고주파 저손실 재질로 사용되고 있는 Mn-Zn 페라이트의 제조공정 중 소결조건과 Ta2O5첨가가 Mn-Zn 페라이트의전력손실에 미치는 영향에 대해서 연구하였다. 등조성선을 따라 냉각하기 위하여 컴퓨터를 사용해서 정확하게 산소분압을 조절하였으며 적절한 등조성선을 선택함으로써 보다 좋은 손실특성을 얻을 수 있었다. CaO-SiO2 첨가계에 Ta2O5를 0ppm에서 400ppm으로 변화시켜 가며 첨가하였으며, Ta2O5 가 400ppm 첨가되었을 경우 균일한 grain 성장과 더불어 낮은 전력손실을 나타내었다. 온도에 상응하는 상평형 산소분압을 정확히 맞춰 냉각할 경우 전력손실 최소값이 질소 분위기에서 냉각시킨 시편보다 높은 온도쪽으로 이동됨도 확인할 수 있었다.