검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 116

        41.
        2018.05 구독 인증기관·개인회원 무료
        The Semi-Rigid Pavement (SRP) mixture is composed of Gap Graded Asphalt (GGA) mixture (air void = 20~28%) and cement paste. By inserting cement paste into voids in GGA mixture, SRP can provide not only flexibility but also rigidity characteristics on pavement performance. SRP can mitigate pavement surface temperature increase during summer session, provide better smoothness and mitigate rutting distress due to heavy weight vehicles, successfully. In Japan, SRP is widely applied in cross section area, heavy vehicle parking lot and highway ticketing booth in highway network system. In South Korea, SRP was introduced and applied since 2005. However, still more researches and studies are needed to understand material characteristics and improve performance of SRP. Moreover, the current SRP system in South Korea merely follows and adapts the aggregate gradation information from Japan which needs to be amended and customized into original material (i.e. aggregate, binder and cement) situation of South Korea. In this paper, SRP system based on Stone Mastic Asphalt (SMA) mixture design originated from Korea Expressway Corporation (KEC) and enhanced cement paste with addition of fly-ash and slags was developed. In addition, an optimized proportion between asphalt mixture air voids and cement paste amount with consideration of economic benefit was introduced. Based on field evaluation process it can be said that the newly developed SRP system can successfully adapted not only in static site on highway: parking lots or ticketing booth, but also in dynamic site on highway: driving and wheel path.
        42.
        2018.05 구독 인증기관·개인회원 무료
        Since the first development of asphalt emulsion in 1920, the asphalt emulsions have been in existence for almost 100 years. The advantages of asphalt emulsion compared to hot asphalt and cut back binders are related to the low application temperature, compatibility with other water-based binders like rubber latex and cement, and lowsolvent content. Surface active agents(surfactants), also known as emulsifiers or emulsifying agents, are needed to provide the stability required over time. The type of asphalt emulsion is largely divided into two for the mixture which acts as a binder by mixing with the aggregate and for the bonding strength between asphalt pavement layers. The cold recycled asphalt mixture is affected the binding strength between asphalt and aggregate, depending on the properties of the asphalt binder as well as the emulsifier properties. Four kinds of emulsifiers(alkyl amines, ligine amine, fatty amine, alkyl amido polyamines) were used to make emulsified asphalt, and their basic properties (storage stability, cement mixing test, penetration, etc.) and aggregate film separation were measured. As a result, the penetration of the asphalt emulsion made by the type of alkyl amido polyamines emulsifier was measured to be about 10.4% higher, and the stripping of the bitumen-aggregate film was also lower about 21%. This is because polyamine has two or more primary amino groups –NH2 forms a strong binding force.
        43.
        2018.05 구독 인증기관·개인회원 무료
        In Korea, concrete pavements were first applied to highways in 1981 and as a result of continued increase in length over the past years, 2,592 km of concrete pavement network is currently in service, of which 1,399 km(54%) of concrete pavements is 10 years or older, and 233km(9%) is 20 years or older. The length of concrete pavement sections nationwide has been steadily on the rise every year (EXTRI, 2017). Approximately 54% of current concrete pavement highway network will reach the service life limit in 2025 which means around 660 billion won is needed for future pavement repair project (EXTRI, 2017). Given that concrete pavements beyond design life still have a remaining service life, it is economically advantageous to repair them before reconstruction. Asphalt overlays are a major repair method for older concrete pavements. Depending on the concrete pavement condition, thickness and mixture of asphalt overlays are determined. Service life of asphalt overlays varies by the presence, time and size of cracks in existing concrete pavements and reflecting crack at joints. Temperature change of concrete pavement is among the major reaction parameters of reflecting crack. Reflecting crack develops when asphalt bottom-up cracking by longitudinal shrinkage and expansion due to temperature change of the concrete base layer, top-down cracking by temperature difference between top and bottom of concrete, and shear stress by traffic loading are combined (Baek, 2010). Crack and joint behaviors of concrete pavement vary between the base layer and the concrete surface of composite pavement system, and different conductivity by mixture and thickness of asphalt overlay leads to temperature change of concrete base course. This study measured temperatures of each layer of diverse composite pavements in place on site and analyzed differences in temperature change of concrete base layer depending on mixture and thickness of asphalt overlays. Overlay thickness parameters were 5cm and 10cm, two values most widely used, while mixture parameters were SMA and porous asphalt. Based on temperature change of concrete surface, this study also evaluated the difference of temperature change in concrete base layer with an asphalt overlay on top. Findings from this study are expected to be utilized for studies on mechanism and modeling of reflecting crack in old concrete pavements with asphalt overlays.
        44.
        2018.05 구독 인증기관·개인회원 무료
        The aged asphalt binder included in RAP due to the oxidative aging, repeated vehicle load, climate process affects to the recycled asphalt mixture property and performance (stripping, port hole and premature cracking initiation) after paving. The rejuvenator commonly is used to recover the aged binder in hot mix asphalt (HMA) containing RAP; the effect of rejuvenator in HMA had been proven according to many studies for over the past several decades. Also, there are many methods for using RAP in asphalt mixture in aspects of HMA, cold asphalt mixture (CMA) and worm mix asphalt mixture (WMA), and a foamed asphalt mixture is one of them. Employing the foamed asphalt manufacturing technology, the content of RAP in recycled asphalt mixture can be increased more. The objectives of this study are to evaluate of rejuvenator influence on foamed asphalt mixture using 100% RAP based on strength change of test sample and stiffness change of recovered binder from RAP and specimen. As the results, when rejuvenator was added to make foamed asphalt mixture, MS and ITS values decreased clearly as compared with the foamed asphalt mixture without rejuvenator use. The use of rejuvenator up to 6% showed a tendency of the decrease of strength and stability remarkably. The use of rejuvenator over 6% did not decrease the strength and stability. DSR test results, the use of rejuvenator in making a foamed asphalt mixture using 100% RAP showed a recovery effect of the foamed asphalt mixture. And recovered binder from the specimen that was made adding the 6, 12 and 18% rejuvenator showed lower stiffness obviously compared to the recovered binder from RAP adding same dosage of rejuvenator.
        45.
        2018.05 구독 인증기관·개인회원 무료
        This study evaluated the effect of steel slag and steel wool fibers (SWF) on self-healing performance of asphalt mixture. The microstructure and distribution of SWF in mixture were examined by a computerized tomography scan and image analysis program. Thermal conductivity was investigated using the thermal constant analyser. The heating rate and healing performance were measured by induction heating system. The results showed the uneven distribution and the agglomeration in the mixtures when the content of fibers exceed a certain dosage. It was found that the mix with steel slag had higher heating rate than the mix with normal aggregate; however, its healing performance was slightly lower because of the breaking of weak steel slag. Finally, the mechanical test results indicated that SWF can enhance the resistance and prolong the fatigue life of asphalt mixtures.
        46.
        2018.05 구독 인증기관·개인회원 무료
        It is well known fact that the filed asphalt mixture is aged in the truck while hauling and queuing for one to four hours before dumping to the hopper of the paver. This aging, which is called short-term aging (STA), affect the physical and mechanical properties of asphalt mixture. For example, the maximum theoretical density of mixture is changed before and after STA. Therefore, when the asphalt mixture specimen is prepared for testing various physical and mechanical properties in laboratory, the mixture should be STA conditioned by a most-likely STA condition of the field. This is the reason why the STA should be performed properly. This study initiated to investigate STA conditioning protocols, set forth many agencies in the world, and to suggest a proper STA protocol which simulates field HMA condition as most likely as possible. According to this study, it was suggested that the blended loose mix for one specimen poured in a canister should be kept in a drying oven (no forced draft) without cap at 163±2℃ and for 70±15 min for normal HMA mix. This protocol was suggested based on that the absolute viscosity level of the recovered binder after STA should be a similar level of the same binder after a standard RTFO run.
        47.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Asphalt concrete pavement is damaged by various causes such as traffic and environmental loads. The distressed pavement should be maintained by various methods to provide a comfortable and safe pavement for the driver. This study evaluates the effect of adding a mixing procedure to enhance the mixture quality in the hot in-placement recycled asphalt pavement method, which is an asphalt-pavement maintenance method. METHODS: Various test methods such as Marshall stability and dynamic stability, were employed to estimate the recycled asphalt mixture with and without an additional mixing, using the hot in-placement recycled asphalt pavement method. RESULTS : The mixture samples used in this study were taken before and after the addition of the mixer in the hot in-placement recycled asphalt pavement method (HIR) at field construction sites in GongJu and JinJu in South Korea. The test results of both mixtures satisfied the asphalt-mixture standard specifications. CONCLUSIONS: This study confirmed that adding a mixer in the HIR method results in a well-mixed new asphalt mixture, rejuvenator, and reclaimed asphalt mixture.
        4,000원
        48.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The purpose of this study is to evaluate the mechanical properties of a cold-recycling asphalt mixture used as a base layer and to determine the optimum emulsified-asphalt content for ensuring the mixture’s performance. METHODS: The physical properties (storage stability, mixability, and workability) of three types of asphalt emulsion (CMS-1h, CSS-1h, and CSS-1hp) were evaluated using the rotational viscosity test. Asphalt emulsion residues, prepared according to the ASTM D 7497-09 standard, were evaluated for their rheological properties, including the G*/sinδand the dynamic shear modulus (|G*|). In addition, the Marshall stability, indirect tensile strength, and tensile-strength ratio (TSR) were evaluated for the cold-recycling asphalt mixtures fabricated according to the type and contents of the emulsified asphalt. RESULTS: The CSS-1hp was found to be superior to the other two types in terms of storage stability, mixability, and workability, and its G*/sinδ value at high temperatures was higher than that of the other two types. From the dynamic shear modulus test, the CSS-1hp was also found to be superior to the other two types, with respect to low-temperature cracking and rutting resistance. The mixture test indicated that the indirect tensile strength and TSR increased with the increasing emulsified-asphalt content. However, the mixtures with one-percent emulsified-asphalt content did not meet the national specification in terms of the aggregate coverage (over 50%) and the indirect tensile strength (more than 0.4 MPa). CONCLUSIONS : The emulsified-asphalt performance varied greatly, depending on the type of base material and modifying additives; therefore, it is considered that this will have a great effect on the performance of the cold-recycling asphalt pavement. As the emulsified-asphalt content increased, the strength change was significant. Therefore, it is desirable to apply the strength properties as a factor for determining the optimum emulsified-asphalt content in the mix design. The 1% emulsified-asphalt content did not satisfy the strength and aggregate coverage criteria suggested by national standards. Therefore, the minimum emulsified-asphalt content should be specified to secure the performance.
        4,300원
        49.
        2017.10 구독 인증기관·개인회원 무료
        Recently, in an asphalt mixture manufacturing plant, "environment" "safety" "energy saving and resource saving" is an important issue. Many plants already make efforts to save energy, that is, to reduce CO2 emissions by using low fuel consumption burners and devising to change the shape of the blades to improve the thermal efficiency in the drier. In addition, the heating and classification of stone materials and dust generated during mixing are handled by dust collectors. Furthermore, with regard to various materials used in plants, we are working on environmental conservation by emphasizing environmental pollution prevention and safety of working environment. However, recently, the location conditions of plants have diversified, such as the presence of residential areas in the vicinity of plants, and these measures are not enough. In this report, we report a part of the actual situation of "environment", "safety", "energy conservation and resource saving" adopted in plants in Japan. 1, Introduction to odor control In an asphalt mixture production plant, a special odor is generated by the trace amounts of hydrocarbon oxides and sulfur compounds when loading an exhaust stack or an asphalt mixture. In an asphalt mixture production plant, a special odor is generated by a very small amount of hydrocarbon oxides and sulfur compounds when the gas from the exhaust pipe and the transporting asphalt mixture. As a countermeasure against the odor of the exhaust pipe, a method of burning trace substances is adopted by using a deodorizing furnace, but since it consumes a large amount of energy, there is a problem of suppressing CO2 emission. In this report, we identify odor-causing substances from plant and propose odor reduction by deodorant suitable for these substances. 2, Introduction to anti-adhesion agents for asphalt Conventionally, mineral oil such as heavy oil and diesel oil was applied to deal with the adhesion of asphalt mixture to the equipment of asphalt mixture production plant, dump for delivery, finisher at construction, road roller and so on. However, by using a large amount of these mineral oils, a part of the asphalt composite material is cut back, causing problems such as pot holes after construction. In addition, problems such as water pollution due to leakage of mineral oil are also raised. In this report, we propose a water - soluble and biodegradable anti - adhesion agent. 3, Introduction to Recycling Additives More than 70% of the asphalt mixture used in Japan is a recycled mixture. Effective utilization of recycled mixture is the most important question to be considered from the perspective of resource protection, energy conservation, cost reduction. In Japan, initially, blends with asphalt with high needle penetration and low softening point and amethod of adding crude by-products of lubricating oil production has been adopted. However, in the former, the ratio of the recycled asphalt mixture is limited to about 10 to 20%, and in the latter case, since it is high viscosity, it is necessary to heat at the time of use, that the recycling effect is not sufficient. In addition, there is a problem in that it contains a large amount of aromatic moieties, especially polycyclic aromatic moieties, which are likely to be carcinogenic. In order to solve these problems, in this report, the combination of several kinds of special mineral oils and the use of special additives are used to achieve low viscosity, high flash point, low aromaticity, And high recycle additives are proposed. Asphalt mixture manufacturing plants in Japan are located in urban areas near the demand of large cities, so the environment is well considered. Recently, regulations such as the Air Pollution Prevention Ordinance, the Anti-Odor Prevention Ordinance and the Noise Prevention Ordinance have been strengthened. Furthermore, the safety training for workers using SDS for hazardous substances has been complicated is in fact. In order to solve these problems, we are not limited to this report, but we fully understand the needs of the plant and develop products that meet the environmental, safety, energy and resource conservation key words. I would like to propose.
        50.
        2017.10 구독 인증기관·개인회원 무료
        This study evaluates the healing performance of asphaltmixture via microwaves heating method. Three different conductive additive types with various percentages were used, includingsteel wool fibers (SF), carbon fibers (CF), and graphite (G). The healing performance of asphalt mixture wasinvestigated through 10 damage-heal cycles of semi-circular samples using three-point bending test. The infraredcamera was also employed to recordthe heat transmitting in the test samples. The test results indicated that the healing effectiveness reduced after every healing cycles. It was found that microwave radiation provided great healing performance for almost all test samples. Among all types of conductive additives, SF mixtures achieved the highest healing performance with the healing level of higher than 50 percent after 10 cycles. However, microwaves heating may promote the faster aging of asphalt binder at late cycles which lead to the brittle behavior of samples. Finally, homogenous mixing is a critical factor to avoid the cluster formation of conductive additives which causes the overheating of asphalt binder.
        51.
        2017.10 구독 인증기관·개인회원 무료
        아스팔트 혼합물이 운반·대기 중에 단기노화(short-term aging: STA)되는 것은 잘 알려진 사실이며 노화정도는 혼합물의 온도가 높음에 따라 그리고 시간이 길어짐에 따라 지수 함수적으로 증가되는 것으로 알려져 있다. 또한 같은 온도와 시간에 같은 바인더, 골재 및 입도를 사용한 같은 혼합물이라도 사용되는 첨가제의 종류에 따라 노화도에 차이가 난다. 그리고 혼합물의 종류에 따라서도 노화도에 차이가 큰 것으로 알려져 있다. 따라서 본 연구에서는 박리방지제(anti-stripping agent: ASA)의 종류와 혼합물의 종류에 따른 노화도의 차이를 비교분석 하였다. ASA로는 박리방지효과가 우수한 분말의 소석회와 액상 ASA를 비교하였다. 혼합물은 밀입도 아스팔트 (dense-graded asphalt: DGA) 표층용 혼합물과 쇄석 매스틱 아스팔트 (stone mastic asphalt: SMA) 혼합물을 비교하였다. 노화도는 아스팔트 노화의 척도로는 가장 많이 쓰이는 절대점도(absolute viscosity: AV)를 이용하였다. STA 온도와 시간에 따른 AV의 차이를 STA 처리된 혼합물로부터 추출·회수하여 60℃에서 측정하였다. 시험결과 같은 온도와 시간으로 STA 처리된 혼합물에서 소석회가 사용된 혼합물의 노화도가 월등히 낮았으며, 혼합물의 종류로는 SMA 혼합물의 노화도가 DGA 혼합물보다 낮게 나타났다. 이는 소석회가 박리방지효과 뿐만 아니라 노화억제 효과가 크기 때문이며, SMA는 바인더 함량이 높아 골재를 피복한 아스팔트 필름의 두께가 두꺼워 노화도가 적게 나타난 것으로 판단되었다.
        53.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        OBJECTIVES : The objective of this research is to determine the moisture resistance of the freeze-thaw process occurring in low-noise porous pavement using either hydrated-lime or anti-freezing agent. Various additives were applied to low-noise porous asphalt, which is actively paved in South Korea, to overcome its disadvantages. Moreover, the optimum contents of hydrated-lime and anti-freezing agent and behavior properties of low-noise porous asphalt layer are determined using dynamic moduli via the freeze-thaw test. METHODS: The low-noise porous asphalt mixtures were made using gyratory compacters to investigate its properties with either hydratedlime or anti-freezing agent. To determine the dynamic moduli of each mixture, impact resonance test was conducted. The applied standard for the freeze-thaw test of asphalt mixture is ASTM D 6857. The freeze-thaw and impact resonance tests were performed twice at each stage. The behavior properties were defined using finite element method, which was performed using the dynamic modulus data obtained from the freezethaw test and resonance frequencies obtained from non-destructive impact test. RESULTS: The results show that the coherence and strength of the low-noise porous asphalt mixture decreased continuously with the increase in the temperature of the mixture. The dynamic modulus of the normal low-noise porous asphalt mixture dramatically decreased after one cycle of freezing and thawing stages, which is more than that of other mixtures containing additives. The damage rate was higher when the freeze-thaw test was repeated. CONCLUSIONS : From the root mean squared error (RMSE) and mean percentage error (MPE) analyses, the addition rates of 1.5% hydrated-lime and 0.5% anti-freezing agent resulted in the strongest mixture having the highest moisture resistance compared to other specimens with each additive in 1 cycle freeze-thaw test. Moreover, the freeze-thaw resistance significantly improved when a hydrated-lime content of 0.5% was applied for the two cycles of the freeze-thaw test. Hence, the optimum contents of both hydrated-lime and anti-freezing agent are 0.5%.
        4,000원
        54.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        OBJECTIVES: The objective of this research is to develop additives for the modification of Solvent DeAsphalting Residue (SDAR) to be used as pavement materials, and evaluate the performance of asphalt mixture manufactured using the SDAR modified by developed additives. METHODS: The SDAR generally consists of more asphaltenes and less oil components compared to the conventional asphalt binder, and hence, the chemical/physical properties of SDAR are different from that of conventional asphalt binder. In this research, the additives are developed using the low molecular oil-based plasticizer to improve the properties of SDAR. First, the chemical property of two SDARs is analyzed using SARA (saturate, aromatic, resin, and asphaltene) method. The physical/rheological properties of SDARs and SDARs containing additives are also evaluated based on PG-grade method and dynamic shear-modulus master curve. Second, various laboratory tests are conducted for the asphalt mixture manufactured using the SDAR modified with additives. The laboratory tests conducted in this study include the mix design, compactibility analysis, indirect tensile test for moisture susceptibility, dynamic modulus test for rheological property, wheeltracking test for rutting performance, and direct tension fatigue test for cracking performance. RESULTS : The PG-grade of SDARs is higher than PG 76 in high temperature grades and immeasurable in low temperature grades. The dynamic shear modulus of SDARs is much higher than that of conventional asphalt, but the modified SDARs with additives show similar modulus compared to that of conventional asphalt. The moisture susceptibility of asphalt mixture with modified SDARs is good if, the antistripping agent is included. The performance (dynamic modulus, rutting resistance, and fatigue resistance) of asphalt mixture with modified SDARs is comparable to that of conventional asphalt mixture when appropriate amount of additives is added. CONCLUSIONS: The saturate component of SDARs is much less than that of conventional asphalt, and hence, it is too hard and brittle to be used as pavement materials. However, the modified SDARs with developed additives show comparable or better rheological/physical properties compared to that of conventional asphalt depending on the type of SDAR and the amount of additives used.
        4,000원
        55.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This study aims to show the difference of the binder aging level in the hot-mix asphalt (HMA) mixture after short-term aging (SA) under different aging conditions, such as mixture temperature and duration in hour. METHODS: Three SA times (i.e., 1 h, 2 h, and 4 h) at two temperatures (i.e., 160℃ and 180℃) were used for the normal mixtures prepared using a PG64-22 asphalt. The field long-term aging (LA) was simulated by applying the same LA procedure (65 h at 110℃) to all compacted specimens, prepared at the air void of 7% using each SA-treated mixture, in a convection oven. The binder aging level was measured in terms of large molecular size by gel-permeation chromatography (GPC) from the mixture and the absolute viscosity (AV) from the recovered binder. The aging levels were evaluated using those two properties after SA and LA, and then compared based on the normal SA (NSA) mixture (1 h at 160℃). The service life reduction caused by SA in various conditions was estimated based on the aging level of the field cores from different locations in various service lives. RESULTS: The results of the laboratory evaluation indicated that the binder of the mixture, which was treated at longer SA time and higher temperature, showed a significantly higher aging level than the NSA mixture. The binder aging level from a longer time, such as 2 h and 4 h SA, or at a higher temperature (180℃), were estimated to be similar to that of the mixtures, which had already been in field service for several years. CONCLUSIONS : The HMA mixture should be produced at a moderate temperature, such as 160℃, and placed within a limited hauling and queuing time to avoid a significant short-term aging of the binder before placement in the field pavement. The SA for a longer time at a higher temperature than the NSA condition was found to be detrimental to the service life of the asphalt pavement.
        4,000원
        56.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study primarily focused on evaluating the performance characteristics of 4.75-mm nominal maximum aggregate size (NMAS) asphalt mixtures for their more effective implementation to a layered flexible pavement system. METHODS: The full-scale pavements in the FDOT’s accelerated pavement testing (APT) program, including 4.75-mm mixtures at the top with different thicknesses and asphalt binder types, were considered for the faster and more realistic evaluation of the rutting performance. The results of superpave indirect tensile (IDT) tests and hot-mix asphalt fracture mechanics (HMA-FM) based model predictions were used for cracking performance assessments. RESULTS: The results indicated that the rutting performance of pavement structures with 4.75-mm mixtures may not be as good as to those with the typical 12.5-mm mixtures, and pavement rutting was primarily confined to the top layer of 4.75-mm mixtures. This was likely due to the relatively higher mixture instability and lower shear resistance compared to 12.5-mm mixtures. The energy ratio (ER) and HMA-FM based model performance prediction results showed a potential benefit of 4.75-mm mixtures in enhanced cracking resistance. CONCLUSIONS : In relation to their implementation, the best use of 4.75-mm mixtures seem to be as a surface course for low-trafficvolume applications. These mixtures can also be properly used as a preservation treatment that does not necessarily last as long as 12.5-mm NMAS structural mixes. It is recommended that adequate thicknesses and binder types be considered for the proper application of a 4.75-mm mixture in asphalt pavements to effectively resist both rutting and cracking.
        4,000원
        57.
        2015.10 구독 인증기관·개인회원 무료
        Analyzing asphalt mixture images can provide crucial information not only for generating advanced geometry structure in several numerical computations (i.e. FEM and/or DEM) codes, but also for numerically evaluating the material microstructure. It is well known that 3D X-Ray Computer Tomography (CT) can provide accurate and realistic microstructure information of asphalt mixtures; however, this technology still presents two limitations: 1) the equipment is very expensive and, therefore, only few pavement agencies can afford it, and 2) the software required to generate realistic image of asphalt mixture with three-phase structure (aggregate, asphalt binder and air-voids) is based on a global thresholding algorithm which cannot be easily accessed and edited by users and practitioners. In this paper, accurate and realistic 2D three-phase asphalt mixture images were generated using an advanced DIP analysis code (implemented on MATLABTM) and a common flatbed scanner, which can be easily purchased at relatively low price. The threshold algorithm was developed based on the computed results of Gmm (maximum specific gravity), Gmb (bulk specific gravity), VMA (voids in mineral aggregates) of given asphalt mixtures which can be experimentally obtained in a laboratory environment. 2D three-phase images of asphalt mixtures were derived from grey scale images (color intensity from 0 to 255) obtained from original RGB (Red-Green-Blue) scale images with a dual-threshold computation techniques (i.e. one step for computing air voids phase, T1, and a second step for computing asphalt binder (and/or mastic) phase, T2). An example of DIP analysis results is shown in Figure 1. Based on the computation results, quite accurate and good visual agreement was observed between RGB scale image and DIP analyzed image. The findings indicate that this advanced DIP analysis technique can provide reliable geometry and microstructural information for several numerical simulations such as finite element method (FEM) and discrete element modeling (DEM). This research work represents a solid base for performing simple 2D microstructure analysis using 2- and 3-point correlation function and for developing the Moon Cannone Falchetto (MCF) model which will be introduced in the next annual KSRE conference.
        58.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The hydrated lime-modified asphalt, which improves moisture resistance, is normally used for pavements to reduce the number of potholes. However, the method of applying the material properties of the lime-modified asphalt mixture for use in pavements is not covered in the Korean Pavement Research Program (KPRP). The objective of this research is to find a method for the design application of lime-modified asphalt’s material properties to the KPRP. METHODS: The section for test design is selected in some conditions which are related to the level of design regarding Annual Average Daily Traffic (AADT). To define the application methods of hydrated lime in the KPRP, the models of fatigue, rut and international roughness index (IRI) are determined based on the M-EPDG test results from some earlier research results. Moreover, it is well known that dynamic moduli of the unmodified mixture are not different from those of the lime-modified mixture. RESULTS: The performance results of hydrated lime-modified asphalt pavement were not very much different from those of the unmodified pavement, which meant the limited design regulations regarding fatigue failure, rutting deformation and IRI. CONCLUSIONS: The KPRP uses the weather model from the data for previous 10 years. It implies that the KPRP cannot predict abnormal climate changes accurately. Hence, the predictive weather data regarding the abnormal climate changes are unreliable. Secondly, the KPRP cannot apply the moisture resistance of asphalt mixtures. Therefore, a second level of design study will have to be performed to reflect the influence of moisture. It means that the influence on pavement performance can be changed by the application of hydrated lime in asphalt mixture design.
        4,000원
        59.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: Evaluation of the wind speed effect on the temperature drop of an asphalt mixture during construction, by using the transient heat transfer theory and dominant convective heat transfer coefficient model. METHODS: Finite difference method (FDM) is used to solve the transient heat transfer difference equation numerically for various wind speeds and initial temperature conditions. The Blasius convective heat transfer coefficient model is adapted to account for the effect of wind speed in the temperature predictions of the asphalt mixture, and the Beaufort number is used to select a reasonable wind speed for the analysis. As a function of time and depth, the temperature of the pavement structure is predicted and analyzed for the given initial conditions. RESULTS : The effect of wind speed on the temperature drop of asphalt mixture is found to be significant. It seems that wind speed is another parameter to be accounted for in the construction specifications for obtaining a better quality of the asphalt mixture. CONCLUSIONS: It is concluded that wind speed has a significant effect on the temperature drop of the asphalt layer. Although additional field observations have to be made to reflect the effect of wind speed on the construction specifications, it appears that wind speed is a dominant variable to be considered, in addition to the atmospheric temperature.
        4,000원
        60.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: Evaluation of thermal conductivity and convection properties of asphalt mixture by using thermodynamics. METHODS: In this research, temperature prediction model based on thermodynamics is derived for asphalt mixture in transient state and it is verified with laboratory test results. RESULTS: The derived temperature prediction model shows good agreement with laboratory test results. CONCLUSIONS: It is concluded that the derived model based on thermodynamics and thermal properties in the literature are good enough to capture temperature variation in laboratory test. The approach based on thermodynamics can be applied to more complex temperature simulations.
        4,000원
        1 2 3 4 5