검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 606

        61.
        2021.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The conversion of all carbon preforms to dense SiC by liquid infiltration can become a low-cost and reliable method to form SiC-Si composites of complex shape and high density. Reactive sintered silicon carbide (RBSC) is prepared by covering Si powder on top of 0.5-5.0 wt% Y2O3-added carbon preforms at 1,450 and 1,500°C for 2 hours; samples are analyzed to determine densification. Reactive sintering from the Y2O3-free carbon preform causes Si to be pushed to one side and cracking defects occur. However, when prepared from the Y2O3-added carbon preform, an SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C = SiC reaction, 3C and 6H of SiC, crystalline Si, and Y2O3 phases are detected by XRD analysis without the appearance of graphite. As the content of Y2O3 in the carbon preform increases, the prepared RBSC accelerates the SiC conversion reaction, increasing the density and decreasing the pores, resulting in densification. The dense RBSC obtained by reaction sintering at 1,500 oC for 2 hours from a carbon preform with 2.0 wt% Y2O3 added has 0.20% apparent porosity and 96.9% relative density.
        4,200원
        62.
        2021.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To solve the common problems of concrete preparation in low-temperature environments, calcium formate (C2H2O4Ca), anhydrous sodium sulfate (Na2SO4), triethanolamine (C6H15O3N), calcium bromide (CaBr2), and triisopropanolamine (C9H21NO3) are selected as early strength agents and mixed with C40 concrete in different dosages under low-temperature environments of 5 oC and 10 oC to develop a high-efficiency low-temperature compound early strength agent based on the effect of single-doped early strength agents. The effects of the compound early strength agent on the early strength of the concrete, the cement paste setting time, and cement fluidity at 5 oC and 10 oC are investigated, and the corresponding reaction mechanism is discussed from the perspective of micro-products. The best compound early strength agent ratio is found to be 2% of calcium formate + 0.08 % of TEA (C6H15O3N). The compound early strength agent effectively promotes the formation of hydration products, such as Ca(OH)2 and C-S-H gel. In comparison with the control group, the strength of the concrete cured for 18 h, 1 d, 3 d, and 7 d under simulated natural conditions at 5 oC increases by 700%, 540%, 11.4 % and 10 %, respectively, whereas at 10 oC, the corresponding values are 991%, 400%, 19.6 % and 11 %, respectively. The strength of the concrete at each age is close to the normal temperature standard of the curing strength. The addition of the compound early strength agent causes a reduction in cement fluidity and initial and final setting times, and also yields a good effect on the porosity of the early concrete.
        4,600원
        64.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        One-dimensional (1D) piezoelectric nanostructures are attractive candidates for energy generation because of their excellent piezoelectric properties attributed to their high aspect ratios and large surface areas. Vertically grown BaTiO3 nanotube (NT) arrays on conducting substrates are intensively studied because they can be easily synthesized with excellent uniformity and anisotropic orientation. In this study, we demonstrate the synthesis of 1D BaTiO3 NT arrays on a conductive Ti substrate by electrochemical anodization and sequential hydrothermal reactions. Subsequently, we explore the effect of hydrothermal reaction conditions on the piezoelectric energy conversion efficiency of the BaTiO3 NT arrays. Vertically aligned TiO2 NT arrays, which act as the initial template, are converted into BaTiO3 NT arrays using hydrothermal reaction with various concentrations of the Ba source and reaction times. To validate the electrical output performance of the BaTiO3 NT arrays, we measure the electricity generated from each NT array packaged with a conductive metal foil and epoxy under mechanical pushings. The generated output voltage signals from the BaTiO3 NT arrays increase with increasing concentration of the Ba source and reaction time. These results provide a new strategy for fabricating advanced 1D piezoelectric nanostructures by demonstrating the correlation between hydrothermal reaction conditions and piezoelectric output performance.
        4,000원
        65.
        2021.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report the growth and enhanced photoelectrochemcial (PEC) water-splitting reactivity of few-layer MoS2 nanosheets on TiO2 nanowires. TiO2 nanowires with lengths of ~1.5 ~ 2.0 μm and widths of ~50~300 nm are synthesized on fluorine-doped tin oxide substrates at 180 oC using hydrothermal methods with Ti(C4H9O)4. Few-layer MoS2 nanosheets with heights of ~250 ~ 300 nm are vertically grown on TiO2 nanowires at a moderate growth temperature of 300 oC using metalorganic chemical vapor deposition. The MoS2 nanosheets on TiO2 nanowires exhibit typical Raman and ultraviolet-visible light absorption spectra corresponding to few-layer thick MoS2. The PEC performance of the MoS2 nanosheet/TiO2 nanowire heterostructure is superior to that of bare TiO2 nanowires. MoS2/TiO2 heterostructure shows three times higher photocurrent than that of bare TiO2 nanowires at 0.6 V. The enhanced PEC photocurrent is attributed to improved light absorption of MoS2 nanosheets and efficient charge separation through the heterojunction. The photoelectrode of the MoS2/TiO2 heterostructure is stably sustained during on-off switching PEC cycle.
        4,000원
        66.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tetracycline is one of the most commonly used as antibiotics for the livestock industry and it is still widely used nowadays. Tetracycline and its metabolites are excreted with excrement, which is difficult to completely removed with conventional sewage treatment, therefore it is apprehended that the tetracycline-resistant bacteria occurs. In this study, the oxidant named ferrate(VI) was used to degrade the tetracycline and investigate the reaction between ferrate(VI) and tetracycline under various aqueous conditions. The highest degradation efficiency of tetracycline occurred in basic condition (pH 10.1 ± 0.1) because of the pKa values of tetracycline and ferrate(VI). The results also showed the effect of water temperature on the degradation of tetracycline was not significant. In addition, the dosage of ferrate(VI) was higher, the degradation of tetracycline and the self-degradation of ferrate(VI) also higher, finally the efficiency of ferrate(VI) was lower. The results said that the various mechanisms effects the reaction of ferrate(VI) oxidation, it required the consideration of the characteristics of the target compound for optimal degradation efficiency. Additionally, intermediate products were detected with LC/MS/MS and three degradation pathways were proposed.
        4,200원
        68.
        2020.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Hallux valgus (HV) is a foot deformity developed by mediolateral deviation of the first metatarsophalangeal joint. Although various foot-toe orthoses were used to correct the HV angle, verification of the effects of kinetics variables such as ground reaction force (GRF) through three-dimensional (3D) gait analysis according to the various type of orthoses for HV is insufficient. Objects: This study aimed to investigate the effect of soft and hard types of foot and toe orthoses to correct HV deformity on the GRF in individuals with HV using 3D motion analysis system during walking. Methods: Twenty-six subjects participated in the experiment. Participants had HV angle of more than 15° in both feet. Two force platforms were used to obtain 3D GRF data for both feet and a 3D motion capture system with six infrared cameras was used to measure exact stance phase point such as heel strike or toe off period. Total walk trials of each participant were 8 to 10, the walkway length was 6 m. Two-way repeated measures ANOVA was used to determine the effects of each orthosis condition on the various GRF values. Results: The late anteroposterior maximal force and a first vertical peak force of the GRF showed that the hard type orthosis condition significantly increased GRF compared to the other orthosis conditions (p < 0.05). Conclusion: There were significant effects in GRF values when wearing the hard type foot orthosis. However, the hard type foot orthosis was uncomfortable to wear during walking. Therefore, it is necessary to develop a new foot-toe orthosis that can compensate for these disadvantages.
        4,000원
        70.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnesium hydroxide sulfate hydrate (MHSH) whiskers were synthesized via a hydrothermal reaction by using MgO as the reactant as well as the acid solution. The effects of the H2SO4 amount and reaction time at the same temperature were studied. In general, MHSH whiskers were prepared using MgSO4 in aqueous ammonia. In this work, to reduce the formation of impurities and increase the purity of MHSH, we employed a synthesis technique that did not require the addition of a basic solution. Furthermore, the pH value, which was controlled by the H2SO4 amount, acted as an important factor for the formation of high-purity MHSH. MgO was used as the raw material because it easily reacts in water and forms Mg+ and MgOH+ ions that bind with SO4 2- ions to produce MHSH. Their morphologies and structures were determined using X-ray diffraction (XRD) and scanning electron microscopy (SEM).
        4,000원
        72.
        2020.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        SiC is a material with excellent strength, heat resistance, and corrosion resistance. It is generally used as a material for SiC invertors, semiconductor susceptors, edge rings, MOCVD susceptors, and mechanical bearings. Recently, SiC single crystals for LED are expected to be a new market application. In addition, SiC is also used as a heating element applied directly to electrical energy. Research in this study has focused on the manufacture of heating elements that can raise the temperature in a short time by irradiating SiC-I2 with microwaves with polarization difference, instead of applying electric energy directly to increase the convenience and efficiency. In this experiment, Polydimethylsilane (PDMS) with 1,2 wt% of iodine is synthesized under high temperature and pressure using an autoclave. The synthesized Polycarbosilane (PCS) is heat treated in an argon gas atmosphere after curing process. The experimental results obtain resonance peaks using FT-IR and UV-Visible, and the crystal structure is measured by XRD. Also, the heat-generating characteristics are determined in the frequency band of 2.45 GHz after heat treatment in an air atmosphere furnace.
        4,000원
        76.
        2020.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The design and fabrication of catalysts with low-cost and high electrocatalytic activity for the oxygen evolution reaction (OER) have remained challenging because of the sluggish kinetics of this reaction. The key to the pursuit of efficient electrocatalysts is to design them with high surface area and more active sites. In this work, we have successfully synthesized a highly stable and active NiCo2S4 nanowire array on a Ni-foam substrate (NiCo2S4 NW/NF) via a two-step hydrothermal synthesis approach. This NiCo2S4 NW/NF exhibits overpotential as low as 275 mV, delivering a current density of 20 mA cm-2 (versus reversible hydrogen electrode) with a low Tafel slope of 89 mV dec-1 and superior long-term stability for 20 h in 1M KOH electrolyte. The outstanding performance is ascribed to the inherent activity of the binder-free deposited, vertically aligned nanowire structure, which provides a large number of electrochemically active surface sites, accelerating electron transfer, and simultaneously enhancing the diffusion of electrolyte.
        4,000원
        77.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Salmonella is one of the most important bacterial pathogens responsible for many zoonotic food-related infectious diseases. Quantitative detection of the foodborne Salmonella contamination in various food sources is therefore critical for preventing the related disease outbreaks. In this study, we developed and evaluated a reliable real-time polymerase chain reaction (RT-PCR) assay to detect the Salmonella contamination quantitatively. The experimental results showed that our invA gene-specific quantitative RT-PCR (qRT-PCR) assay provides a strong correlation between the Cq values and the direct plate counts of Salmonella species in the artificially formulated samples. Further study may be necessary to identify more accurate correlation and equation that can apply to Salmonella spp.
        3,000원
        78.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Atopic dermatitis (AD) usually develops in patients with an individual or family history of allergic diseases, and is characterized by chronic relapsing inflammation seen specially in childhood, association with IgE hyperproduction and precipitation by environmental factors. and wished to examine closely effect that Polygonum multiflorum isolated PM-E and PM-70M orally adminstration used to atopy dermatitis disease patient get in atopy eruption control experimentally. Atopic dermatitis is a chronically relapsing inflammatory skin disease. Animal models induced by relevant allergens play a very important role in the elucidation of the disease. This study was investigated the anti-allergic effect of PM-E and PM-70M on BMAC induced atopic dermatitis in NC/Nga mice. We summerized as the follow. PM-E and PM-70M significantly reduced the skin number of total cell number, CD4+ and CD11b+/Gr-1 cell compared with positive control and decreased the invasion of CD4+ cell in dorsal skin tissue compared with positive control group by using immunohistochemical staining and chemokine such as eotaxin and CCR3 compared with positive control group. PM-E and PM-70M markedly suppressed invasion and edema of leukocytes and mast cell in dorsal skin. Taken together, these findings suggested that PM-E and PM-70M has an anti-allergic activity and this might be useful for the clinical application to treat allergic diseases such as atopic dermatitis.
        4,000원
        79.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        반응-확산 모델을 이용한 연속적인 톤의 표현은 형태형성물질의 패턴 형성 방법을 이용한 기법이다. 그레이 스케일의 영상을 형태형성물질의 수학적 모델을 이용해서 이산적인 밝기를 가진 영상으로 변환할 수 있다. 이러한 방법은 영상을 점과 선의 형태로 변환할 수 있게 해주어 다양한 스타일의 영상 렌더링에 사용할 수 있다. 이는 영상의 밝기 정보가 형태형성물질로 변환되고 이를 통해 시뮬레이션을 했을 경우 예측 가능한 결과를 낸다는 가정에서 출발한다. 실제 실험에서는 대체적으로 급격히 변하지 않는 영상 신호에 대해서는 이러한 가정이 잘 들어맞기 때문에 좋은 결과를 나타내지만 영상 신호가 급격히 변화하는 부분에 대해서는 결과 영상에 문제(artifact)가 나타난다. 이는 밝기차이가 급격히 변하는 부분에서 검은 선 형태로 나타나며 이러한 부분은 원영상의 신호와 다른 결과를 낸다고 할 수 있다. 이를 해결하기 위해 본 논문에서는 반응-확산 모델에서 문제를 해결할 수 있는 방법을 도출하고 이를 적용한 새로운 계산 방법을 제시하여 문제를 해결하고자 한다. 제안된 방법에서는 밝기가 급격히 변화하는 부분을 검출하고 이러한 부분에서는 확산이 일어나지 않도록 제어함으로써 해결하였다.
        4,000원
        80.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To improve the mechanical properties of aluminum, graphene has been used as a reinforcing material, yielding graphene-reinforced aluminum matrix composites (GRAMCs). Dispersion of graphene materials is an important factor that affects the properties of GRAMCs, which are mainly manufactured by mechanical mixing methods such as ball milling. However, the use of only mechanical mixing process is limited to achieve homogeneous dispersion of graphene. To overcome this problem, in this study, we have prepared composite materials by coating aluminum particles with graphene by a self-assembly reaction using poly vinylalcohol and ethylene diamine as coupling agents. The scanning electron microscopy and Fourier-transform infrared spectroscopy results confirm the coating of graphene on the Al surface. Bulk density of the sintered composites by spark plasma sintering achieved a relative density of over 99% up to 0.5 wt.% graphene oxide content.
        4,000원
        1 2 3 4 5