검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 438

        61.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present work reports the effect of different functionalization methodologies on surface modification of porous carbon and its efficacy for benzene adsorption. The virgin and surface-modified adsorbents were characterized by FTIR, N2 sorption analysis, SEM, and Boehm titration. The adsorption isotherms were measured at different temperatures using a highly sensitive magnetic suspension microbalance. At lower benzene concentration, the virgin carbon was found to possess reasonable adsorption capacity, while at higher benzene concentration, the surface-modified carbon tends to perform better. The maximum benzene adsorption capacity at 25 °C and vapor pressure of 90 mbar is as follows: 467 mg/g (NORIT-AC), 227 mg/g (AC-APS (1 M)), 388 mg/g (Norit-AC-HT), 492 mg/g (AC-HNO3), and 531 mg/g (AC-H2SO4).
        4,000원
        65.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Biomass porous carbons derived from Laminaria japonica were prepared by KOH and H3PO4 activation methods, respectively. The results indicated that the chemical activation had an apparent effect on the molecular framework and space of materials. To enhance the selective adsorption for organic acids, biomass carbons were modified by dopamine combined with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane. The SEM and BET results illustrated the effect of the chemical activation approach on the morphology and porous texture. The biomass porous carbon using KOH activation method had the highest surface area (up to 1558 m2/ g). Compared with unmodified materials, the modified materials showed higher adsorption capacity for organic acids (27.90 μg/mL for chlorogenic acid and 25.47 μg/mL for caffeic acid). It was suggested that modification of porous carbons might be a viable pathway to increase the specific adsorption affinity and efficiency for organic acids in dried jujube samples.
        4,000원
        66.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The oxygen-rich activated carbon (AC) was facilely developed using petroleum coke as a raw material by KOH activation under the rapid heating rate. The porosity and surface chemistry of ACs prepared under different heating rates were characterized and their adsorption properties for methylene blue (MB) were investigated. The results showed that the AC5 prepared under the heating rate of 5 °C min−1 had the highest surface area compared with the AC10, AC15 or AC20, while the AC20 prepared under the heating rate of 20 °C min−1 consisted of the highest oxygen content and most –OH functional group compares with the other ACs. These indicated that rapid heating rate was against the formation of more developed porosity, however, it was beneficial to producing more oxygen functional groups. As to MB adsorption, AC15 exhibited the maximum adsorption capacity for MB of 884 mg g−1 due to high surface area of 2803 m2 g−1 and high oxygen content of 23.27%. Moreover, despite the fact that AC20 had much lower surface area than the AC5, the AC20 showed higher MB adsorption capacity than the AC5. This was because the AC20 has the highest content of –OH, which was a positive impetus for MB adsorption. Therefore, rapid heating rate was an effective and simple approach to preparing the oxygen-rich ACs for improving the adsorption capacity of MB.
        4,000원
        67.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Numerous chemical modifications on activated carbon such as acidic conditioning, thermal treatment and metal impregnation have been investigated to enhance adsorption capacities of micropollutants in water treatment plants. In this study, chemical modification including acidic, alkaline treatment, and iron-impregnation was evaluated for adsorption of 2,4-dichlorophenol (2,4-DCP). For Fe-impregnation, three concentrations of ferric chloride solutions, i.e., 0.2 M, 0.4 M, and 0.8 M, were used and ion-exchange (MIX) of iron and subsequent thermal treatment (MTH) were also applied. Surface properties of the modified carbons were analyzed by active surface area, pore volume, three-dimensional images, and chemical characteristics. The acidic and alkaline treatment changed the pore structures but yielded little improvement of adsorption capacities. As Fe concentrations were increased during impregnation, the active adsorption areas were decreased and the compositional ratios of Fe were increased. Adsorption capacities of modified ACs were evaluated using Langmuir isotherm. The MIX modification was not efficient to enhance 2,4-DCP adsorption and the MES treatment showed increases in adsorption capacities of 2,4-DCP, compared to the original activated carbon. These results implied a possibility of chemical impregnation modification for improvement of adsorption of 2,4-DCP, if a proper modification procedure is sought.
        4,200원
        68.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tin bis(monohydrogen orthophosphate) monohydrate 물질의 흡착 성질에 관하여 KCl 수용액을 통하여 조사하였다. 금속이온 농도와 pH를 변화시키면서 어떻게 달라지는지 화학평형에 바탕을 두고 data를 분석하였다. 금속이온들의 흡착 data는 Langmuir 흡착식에 넣어 Langmuir 수치들을 얻는데 사용되었다. Tin phosphate는 산성에서 이온교환 화합물로 작용하였으며, 2가의 전이금속이온에 대해 Cu+2 > Co+2 > Ni+2의 순서로 선택적 흡착성질을 나타내었다. 약한 산성 이온 교환체에서와 같이 금속이온의 교환은 tin phosphate의 선택성을 결정하는데 결정적 역할을 하였다. 모든 경우에서 흡착의 정도는 온도와 농도의 증가와 함께 증가하였다. Lnngmuir 수치들은 흡착과정 동안의 엔트로피, 엔탈피, 자유에너지 변화량같은 열역학적 함수들을 계산하는데 이용되었다.
        4,000원
        71.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This work reports the syntheses of an inexpensive and efficient asphalt-derived mesoporous carbon (AdMC) as an adsorbent. The adsorbent was activated with potassium hydroxide to increase its surface area and then characterized by SEM–EDS, FT-IR, and BET. The adsorption properties of AdMC were evaluated for the adsorptive removal of eleven Poly Aromatic Hydrocarbons (PAHs) and diesel from water samples. The prepared AdMC showed very high surface areas and high micropore volumes equal to 2316 m2/g and 1.2 cm3/g, respectively. Various experimental conditions influencing the adsorption capacity of eleven PAHs and diesel were investigated. At high concentrations, PAHs and diesel solubility in water is very low. Hence, samples were emulsified with a surfactant, and then maximum adsorption capacity was investigated. Adsorption profile of individual PAHs was examined using gas chromatography/mass spectrometry analysis followed by liquid–liquid extraction. Total hydrocarbon removal was studied using a total organic analyzer. Asphalt-derived mesoporous sorbent showed an extreme ability to remove PAHs and diesel (average adsorption capacity of 166 mg/g for individual PAHs and diesel (maximum capacity of 1600 mg/g). The experimental results fitted the Langmuir model with a correlation efficiency of 0.9853. The results obtained for both adsorbents also matched to pseudo-second-order kinetics, suggesting that the adsorption of PAHs and diesel is chemical, monolayer, and homogeneous process.
        4,500원
        72.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present work focused on the determination of texture, morphology, crystallinity, and gas adsorption characteristics of porous graphene prepared from rice husks ashes at different stabilization temperature. The stabilization temperature applied in this work is 100 °C, 200 °C, 300 °C, and 400 °C to convert rice husk into rice husk ashes (RHA). Chemical activation was adopted at temperature 800 °C using potassium hydroxide (KOH) as dehydrating agent at (1:5) impregnation ratio to convert RHA into rice husk ashes-derived graphene (GRHA). The resultant GRHA were characterized in terms of their morphological changes, SSA, crystallinity, and functional group with TEM, the BET method, Raman spectroscopy, and XRD analysis, respectively. Results from this study showed that the SSA of the GRHA at stabilization temperature 200 °C (1556.3 m2/g) is the highest compared to the other stabilization temperature. Raman spectroscopy analysis revealed that all GRHA samples possess D, G, and 2D bands, which confirm the successful synthesis of the rice husks into porous graphene-like materials, known as GRHA. Appearance of diffraction peak in XRD at 44.7° indicating the graphitic structure of all the GRHA samples. Meanwhile, the TEM images of GRHA200 exhibited wrinkled structures due to the intercalation of oxygen and a few layers of graphene flakes. These wrinkled structures and graphene layers are the other factors that lead to the highest SSA of GRHA200 compared to other prepared samples GRHA. Furthermore, the adsorption capacity of CH4 for GRHA200 is up to 43 cm3/g at 35 bar and ambient temperature, almost double the adsorption capacity performance of GRHA400 at the same operating pressure and temperature.
        4,000원
        74.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We studied trichloroethylene (TCE) adsorption from aqueous solutions in equilibrium conditions by activated carbons (AC). They differ in raw materials, porous structure characteristics and chemical state of the surface. TCE adsorption isotherms were found to have a concave shape, which is characteristic of a sorbent—sorbate weak interaction. It can be a result from electrostatic repulsion of organic matter molecule from polar groups on carbon surface and adsorbed water molecules. The basic parameters of adsorption were calculated by the Dubinin–Radushkevich equation. We determined that for AG-OV-1 and SKD-515 in the coordinates of the Dubinin–Radushkevich equation, there are two linear plots suggesting adsorption in pores of different sizes or reorientation of adsorbate molecules on the activated carbon surface. The efficiency of TCE removal by the activated carbons was evaluated. To reduce the TCE to the maximum allowable, the lowest sorbent consumption was observed for AC with the highest values of surface area and micropore volume. However, the high cost and hydrophobicity of these adsorbents make it impractical to use them in adsorption columns with a fixed layer. We offered an adsorbent that reasonably combines extraction efficiency, ease of operation and economic feasibility.
        4,000원
        75.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        2 (Langmuir, Freundlich, Elovich, Temkin, and Dubinin-Radushkevich) and 3 (Sips and Redlich-Peterson)-parameter isotherm models were applied to evaluated for the applicability of adsorption of Cu(II) and/or phosphate isotherm using chitosan bead. Non-linear and linear isotherm adsorption were also compared on each parameter with coefficient of determination (R2). Among 2-parameter isotherms, non-linear Langmuir and Freundlich isotherm showed relatively higher R2 and appropriate maximum uptake (qm) than other isotherm equation although linear Dubinin-Radushkevich obtained highest R2. 3-parameter isotherm model demonstrated more reasonable and accuracy results than 2-parmeter isotherm in both non-linear and linear due to the addition of one parameter. The linearization for all of isotherm equation did not increase the applicability of adsorption models when error experiment data was included.
        4,000원
        76.
        2020.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cerium oxide (ceria, CeO2) is one of the most wide-spread oxide supporting materials for the precious metal nanoparticle class of heterogeneous catalysts. Because ceria can store and release oxygen ions, it is an essential catalytic component for various oxidation reactions such as CO oxidation (2CO + O2 2CO2). Moreover, reduced ceria is known to be reactive for water activation, which is a critical step for activation of water-gas shift reaction (CO + H2O → H2 + CO2). Here, we apply van der Waals-corrected density functional theory (DFT) calculations combined with U correction to study the mechanism of water chemisorption on CeO2(111) surfaces. A stoichiometric CeO2(111) and a defected CeO2(111) surface showed different water adsorption chemistry, suggesting that defected CeO2 surfaces with oxygen vacancies are responsible for water binding and activation. An appropriate level of water-ceria chemisorption energy is deduced by vdW-corrected non-local correlation coupled with the optB86b exchange functional, whereas the conventional PBE functional describes weaker water-ceria interactions, which are insufficient to stabilize (chemisorb) water on the ceria surfaces.
        4,000원
        77.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using first-principles theory, we investigated the adsorption performance of CoN4- CNT towards six small gases including NO, O2, H2, H2S, NH3, and CH4, for exploiting its potential application for chemical gas sensors. The frontier molecular orbital theory was conducted to help understand the conductivity change of the proposed material at the presence of gas molecules. The desorption behavior of gas molecules from CoN4- CNT surface at ambient temperature was analyzed as well to determine its suitability for sensing application. Results show that CoN4- CNT is a promising material for O2 and NH3 sensing due to their desirable adsorption and desorption behaviors while not appropriate for sensing NO due to the poor desorption ability and for sensing CH4 and H2 given the poor adsorption behavior. Our calculation would provide a first insight into the CoN4- embedded effect on the structural and electronic properties of single-walled CNT, and shed light on the application of CoN4- CNT towards sensing of small gases.
        4,200원
        78.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbonaceous materials are considered as potential adsorbents for organic dyes due to their unique structures which provide high aspect ratios, hydrophobic property, large efficient surface area, and easy surface modification. In this work, graphene nanoribbons (GNRs) were prepared by atomic hydrogen-induced treatment of single-walled carbon nanotube (SWCNTs), which inspire the idea of cutting and unzipping the SWCNTs carpets with the modified in molecules prevent because of the unfolding of the side-walls. The unfolded spaces and uniform vertical arrangement not only enhance the active surface area, but also promote the electrostatic and π–π interactions between dyes and GNRs. The improved adsorption capacity of GNRs beyond original SWCNTs can be determined by the adsorption kinetics and isotherm, which are evaluated through adsorption batch experiments of the typical cationic methylene blue (MB) and anionic orange II (OII) dye, respectively. It is shown that the adsorption kinetics follow a pseudo second-order model while the adsorption isotherm could be determined by Langmuir model. The results reveal that the maximum adsorption capacities of GNRs for MB and OII are 280 and 265 mg/g, respectively. The GNRs present the highly efficient, cost effective, and environmental friendly properties for the commercial applications of wastewater treatment.
        4,000원
        79.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the flat glass and adsorption pad were modeled using SolidWorks Simulation, to understand the deformation characteristics of the vertical flat glass by the adsorption pressure during vertical transport of LCD. The horizontal and vertical displacements and equivalent stresses of the flat glass were investigated by the structural analysis. From the displacement and stress visualization according to the adsorption pressure, the higher the adsorption pressure, the larger the glass surface protruded. The horizontal deformation of flat glass increased with increasing thickness and the vertical deformation increased with decreasing thickness. In addition, the maximum equivalent stress applied to the flat glass increased significantly as the adsorption pressure increased and the thickness decreased. As a result of the structural analysis, the thinner the thickness of the plate glass, the greater the effect on the adsorption pressure. Especially, the effect of the adsorption pressure was clearly observed at the thickness of 0.5mm.
        4,000원
        80.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the physicochemical characteristics and fluoride adsorption capacity of the bone char pyrolyzed at different temperatures; 200℃, 300℃, 350℃, 400℃, 500℃, 600℃, and 700℃ were investigated. Analytical studies of the synthesized bone char including; SEM-EDS, XRD, BET and FT-IR, showed the presence of hydroxyapatite(HAP), which is the main substance that adsorbs fluoride from aqueous solutions containing high fluoride concentrations. Bone char pyrolyzed from 350∼700℃ specifically revealed that, the lower the temperature, the higher the fluoride adsorption capacity and vice versa. The loss of the fluoride adsorption function of HAP (OH- band in the FTIR analysis) was interpreted as the main reason behind this inverse correlation between temperature and fluoride adsorption. Bone char produced at 350°C hence exhibited a fluoride adsorption capacity of 10.56 mgF/g, resulting in significantly higher adsorption compared to previous studies.
        4,000원
        1 2 3 4 5