검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 168

        121.
        2004.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        탄소 섬유강화 에폭시기지 복합재의 경면 가공한 스테인리스강 상대재와 마찰과 마모에 바탕을 둔 연구에서는 다음과 같은 결론을 얻었다. (1) 복합재의 비마모율은 하중이 증가하면 N방향와 P방향에서는 증가하는 경향을 보이며,AP방향에서는 감소한다. 이것은 마모 메카니즘의 영향으로 속도가 증가하면 마모 이착막의 생성이 빨라져 이착막 속의 탄소섬유가 윤활제의 역할을 하기 때문이다. (2) 복합재의 마찰계수는 하중이 증가하면 N방향과 AP방향에서는 하중 39.2N까지 증가하다가 그 이상의 하중에서는 감소되며 AP방향에서는 하중이 증가함에 따라 서서히 증가하며, 또한 그 값은 N방향에서 가장 크고, AP방향이 가장 적다. (3) 일방향 탄소섬유 강화 복합재의 마모 거동에 미치는 하중의 효과는 다르며 마찰초반에 발생한 섬유에 의한 쟁기질과 섬유 굽힘 및 미소크랙에 의한 섬유 균열과 파괴에 따른 마모 메카니즘의 형태에 의한 것이다.
        4,000원
        122.
        2004.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        탄소 섬유강화 에폭시기지 복합재의 경면 가공한 스테인레스 강 상대재와 마찰과 마모에 바탕을 둔 연구에서 다음과 같은 결론을 얻었다. (1) 일방향 탄소섬유 강화 복합재의 마모 거동에 미치는 미끄럼 방향의 효과는 다르며 작용하는 마모 메커니즘의 형태에 의존한다. (2) 상온에서 경면 가공한 스테인리스 스틸에 대하여 미끄럼이 일어나면 AP 방향에서 높은 마모 저항과 낮은 마찰계수가 관찰되었다. (3) 복합재의 비마모율은 미끄럼 속도가 증가하면 N방향과 P방향에서는 감소하는 경향을 보이며, AP 방향에서는 증가하다가 감소한다. 이것은 마모 메카니즘의 영향으로 속도가 증가하면 마모 이착막의 생성이 빨라져 이착막 속의 탄소섬유가 윤활제의 역할을 하기 때문이다. (4) 복합재의 마찰계수는 미끄럼 속도가 증가하면 3방향 모두 증가하다가 일정한 값에 수렴하면 N방향이 가장 크며, P방향과 AP방향 순이다. 이는 N방향에서 마찰초반에 발생한 섬유의 쟁기질에 의한 상대재 표면의 손상과 돌기변형에 따른 것이며, AP방향의 마찰계수가 가장 낮다.
        4,000원
        123.
        2004.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Chop molding composites and 2D carbon/carbon composites were manufactured by hot press molding method. Phenol resin of novolac type was used for matrix precursor and PAN-based carbon, PAN-based graphite and pitch-based carbon fiber were used for reinforcement and boron oxide was used for oxidation retardant. All of the composites were treated by 2000℃ and 2400℃ graphitization process, respectively. After graphitization process, amount of a boron residue in carbon/carbon composites is much according to irregularity of used raw materials. Under the presence of boron in carbon/carbon composites, catalytic effect of boron was a little at 2000℃ graphitization temperature. However, it was quite at 2400℃ graphitization.
        4,000원
        124.
        2004.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effect of silicon infiltration on the bend and tensile strength of 2D cross-ply carbon-carbon composites are studied. It is observed that bend strength higher than tensile strength in both types of composite is due to the different mode of fracture and loading direction. After silicon infiltrations bend and tensile strength suddenly decreases of carbon-carbon composites. This is due to the fact that, after silicon infiltration, silicon in the immediate vicinity of carbon forms the strong bond between carbon and silicon by formation silicon carbide and un-reacted silicon as free silicon. Therefore, these composites consist of three components carbon, silicon carbide and silicon. Due to mismatch between these three components secondary cracks developed and these cracks propagate from 90˚ oriented plies to 0˚ oriented plies by damaging the fibers (i.e., in-situ fiber damages). Hence, secondary cracks and in-situ fiber damages are responsible for degradation of mechanical properties of carbon-carbon composites after silicon infiltration which is revealed by microstructure investigation study by scanning electron microscope.
        4,000원
        125.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Performance of carbon-carbon composites is known to be influenced by the fibre matrix interactions. The present investigation was undertaken to ascertain the development of microstructure in such composites when carbon fibres possessing different surface energies (T-300, HM-35, P120 and Dialed 1370) and pitch matrices with different characteristics (Coal tar pitch SP110℃ and mesophase pitch SP285℃) are used as precursor materials. These composites were subjected to two different heat treatment temperatures of 1000℃ and 2600℃. Quite interesting changes in the crystalline parameters as well as the matrix microstructure are observed and attempt has been made to correlate these observations with the fibre matrix interactions.
        4,000원
        126.
        2004.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of fiber surface-treatment and sizing on the dynamic mechanical properties of unidirectional and 2-directional carbon fiber/nylon 6 composites by means of dynamic mechanical analysis have been investigated in the present study. The interlaminar shear strengths of 2-directional carbon/nylon 6 composites sized with various thermosetting and thermoplastic resins are also measured using a short-beam shear test method. The result suggests that different surface-treatment levels onto carbon fibers may influence the storage modulus and tan δ behavior of carbon/nylon 6 composites, reflecting somewhat change of the stiffness and the interfacial adhesion of the composites. Dynamic mechanical analysis and short-beam shear test results indicate that appropriate use of a sizing material upon carbon fiber composite processing may contribute to enhancing the interfacial and/or interlaminar properties of woven carbon fabric/nylon 6 composites, depending on their resin characteristics and processing temperature.
        4,000원
        127.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        4,000원
        128.
        2003.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon/carbon composites were developed using PAN based carbon fibres and phenolic resin as matrix in different volume fractions and heat treated to temperatures between 1000℃ to 2500℃. Although both the starting precursors are nongraphitizing hard carbons individually, their composites lead to very interesting properties e.g. x-ray diffractograms show the development of graphitic phase for composites having fibre volume fractions of 30~40%. Consequently the electrical resistivity of such composites reaches a value of 0.8 mΩcm, very close to highly graphitic material. However, it was found that by increasing the fibre volume fraction to 50~60%, the trend is reversed. Optical microscopy of the composites also reveals the development of strong columnar type microstructure at the fibre (matrix interface due to stress graphitization of the matrix. The study forcasts a unique possibility of producing high thermal conductivity carbon/carbon composites starting with carbon fibres in the chopped form only.
        4,000원
        129.
        2003.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the effect of a direct oxyfluorination on surface and mechanical interfacial properties of PAN-based carbon fibers is investigated. The changes of surface functional groups and chemical composition of the oxyfluorinated carbon fibers are determined by FT-IR and XPS measurements, respectively. ILSS of the composites is also studied in terms of oxyfluorination conditions. As a result, FT-IR exhibits that the carboxyl/ester groups (C=O) at 1632 cm-1 and hydroxyl group (O-H) at 3450 cm-1 are observed in the oxyfluorinated carbon fibers. Especially, the oxyfluorinated carbon fibers have a higher O-H peak intensity than that of the fluorinated ones. XPS result also shows that the surface functional groups, including C-O, C=O, HO-C=O, and C-Fx after oxyfluorination are formed on the carbon fiber surfaces, which are more efficient and reactive to undergo an interfacial reaction to matrix materials. Moreover, the formation of C-Fx physical bonding of the carbon fibers with fluorine increases the surface polarity of the fibers, resulting in increasing ILSS of the composites. This is probably due to the improvement of interfacial adhesion between fibers and matrix resins.
        4,000원
        131.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, densified 4D carbon/carbon composites were made from carbon fiber and coal tar pitch through the process of pressure impregnation and carbonization and then followed by carbonization and graphitization. To improve the oxidative resistance of the prepared carbon/carbon composites, the surface of carbon/carbon composites was coated on SiC by the pack cementation method. The SiC coated layer was created by depending on the constitution of pack powder, and reaction time of pack-cementation. The morpology of crystalline and texture of these SiC coated carbon/carbon composites were investigated by XRD, SEM/EDS observation. So the coating mechanism of pack-cementation process was proposed. The oxidative res istance were observed through the air oxidation test, and then the optimal condition of pack cementation was found by them. Besides, the oxidative mechanism of SiC formed was proposed through the observation of SiC coated surface, which was undergone by oxidation test.
        4,000원
        132.
        2002.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Microstructure plays an important role in controlling the fracture behaviour of carbon-carbon composites and hence their mechanical properties. In the present study effort was made to understand how the different interfaces (fiber/matrix interactions) influence the development of microstructure of the matrix as well as that of carbon fibers as the heat treatment temperature of the carbon-carbon composites is raised. Three different grades of PAN based carbon fibres were selected to offer different surface characteristics. It is observed that in case of high-strength carbon fiber based carbon-carbon composites, not only the matrix microstructure is different but the texture of carbon fiber changes from isotropic to anisotropic after HTT to 2600℃. However, in case of intermediate and high modulus carbon fiber based carbon-carbon composites, the carbon fiber texture remains nearly isotropic at 2600℃ because of relatively weak fiber-matrix interactions.
        4,000원
        133.
        2002.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        3,000원
        134.
        2002.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Multiwall carbon nanotubes (MWNT) were produced using the arc-discharge graphite evaporation technique. Composite films were developed using MWNT dispersed in polystirol polymer. In the present work, various properties of the polymeric thin film containing carbon nanotubes were investigated by optical absorption, electrical resistivity and the same have been discussed.
        3,000원
        135.
        2002.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Unidirectional polymer composites were prepared using high-strength carbon fibers as reinforcement and phenolic resin as matrix precursor with keeping fiber volume fraction at 30, 40, 50 and 60% respectively. These composites were carbonized at 1000℃ and graphitised at 2600℃ in the inert atmosphere. The carbonized and graphitised composites were characterized for mechanical properties as well as microstructure. Microscopic studies were carried out of the polished surface of carbonized and graphitised composites after etching by chromic acid, to understand the effect of fiber volume fraction on oxidation at fiber-matrix interface. It is found that the flexural strength in polymer composites increases with fiber volume fraction and so does for the carbonised composites. However, the trend was found to be reversed in graphitised composites. In all the carbonized composites anisotropic region has been observed at fiber-matrix interface which transforms into columnar type microstructure upon graphitisation. The extension of strong and weak columnar type microstructure is function of fiber volume fraction. SEM microscopy of the etched surface of the sample reveal that composites containing 40% fiber volume has minimum oxidation at the interface, revealing a strong interfacial bonding.
        4,000원
        136.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        4D carbon fiber preforms were manufactured by weaving method and their carbon fiber volume fractions were 50% and 60%. In order to form carbon matrix on the preform, coal tar pitch was used for matrix precursor and high density carbon/carbon composites were obtained by high densification process. In this process, manufacture of high density composites was more effective according to pressure increasement. When densificating the preform of 60% fiber volume fraction with 900 bar, density of the composites reached at 1.90 g/cm3 after three times processing. Degree of pressure in the densification process controls macro pore but it can not affect micro pore. During the carbonization process, micro pore of the preform were filled fully by once or twice densification processing. But micro pore were not filled easily in the repeating process. Therefore, over three times densification processing is the filling micro pore.
        4,000원
        137.
        2001.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Carbon/Carbon composite was prepared from 3D carbon fiber preform and coal tar pitch as matrix precursor. In order to evaluate of ablative characteristics of the composite, liquid rocket system was employed Kerosene and liquid oxygen was used as propellants, operating at a nominal chamber pressure of 330 psi and a nominal mixture ratio (O/F) of 2.0. The results of an experimental evaluation were that high density composite exhibited high, while low density composites showed low erosion resistance. The erosion rate against heat flux was highly depended on the density of the materials. The morphology of eroded fiber showed differently according to collision angle with heat flux on the composite. The granular matrix which derived from carbonization pressure of 900 bar was more resistance to heat flux than well-developed flow type matrix.
        4,000원
        138.
        2001.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effects of carbon black (CB) content and anodic oxidation treatment with AgNO3 on positive temperature coefficient (PTC) behavior of CB/HDPE nanocomposites were investigated. Also, the addition of elastomer as a toughing agent was studied. The 20~50 wt% of CB, 0~5 wtt% of elastomer, and 1 wt% of AgNO3-filled HDPE nanocomposites were prepared using the internal mixer in 60 rpm at 160˚C and the compression-molded at 180˚C for 10 min. As a result, the room temperature resistivity and PTC intensity of the composites were dependent, to a large extent, on the content of CB, addition of elastomer, and surface chemical properties that were controlled in the relative arrangements of the carbon black aggregates in a polymeric matrix. Moreover, the composites with relatively low room temperature resistivity and suitable PTC intensity could be achieved by treatment of AgNO3. Consequently, it was noted that PTC effect was due to the deagglomeration or the breakage of the conductive networks caused by thermal expansion or crystalline melting of the polymeric matrix.
        4,000원
        139.
        2001.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The pack-cementation process is the method which is formed SiC coating layer to improve weak oxidation properties of CFRCs (carbon fiber-reinforced carbons). This method develops the anti-oxidation coating layer having no dimensional changes and good wetting properties. In this study to improve the oxidative resistance of the prepared 4D CFRCs, the surface of CFRCs is coated by SiC using pack cementation method. The mechanical properties of SiC-coated 4D CFRCs are measured by the 3-point bending test, and their ablation properties are investigated by the arc torch plasma test. From the results, it is found that both mechanical and ablation properties of SiC-coated 4D CFRCs are much better than bare CFRCs.
        4,000원
        140.
        2001.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of electrochemical surface treatments in KOH chemical solution on microstructures of carbon blacks was investigated in terms of surface functional values and XRD measurements. And their mechanical interfacial properties of the carbon blacks/rubber composites were studied by the composite tearing energy (GIIIC). It was found that the development of basic-surface functional groups lead to the significant physical changes of carbon blacks, such as, decrease of the interlayer spacing (d002), increase of the crystalline size along c-axis (Lc), and increase of degree of crystalline (χc). This treatment is possibly suitable for carbon blacks to be incorporated in a hydrocarbon rubber matrix, resulting in improving the hardness and tearing energy of the resulting composites.
        4,000원
        6 7 8 9