검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 311

        121.
        2015.12 KCI 등재 서비스 종료(열람 제한)
        Drought stress has detrimental effects on the seedling development, vegetative/ reproductive growth, photosynthesis, root proliferation, anthesis, anthesis-silking interval (ASI), pollination and grain yield in maize. Typically, two weeks before silking through pollination are an important time in maize life. Here we reviewed the effects of drought stress on growth, physiological/ molecular researches for drought tolerance, and breeding to genomics in maize. Drought stress during kernel development increases leaf dying and lodging, decreases grain filling period and grain yield. Physiological factors of drought stress/ effects are water content, water deficits, and water potential. Nowdays molecular marker assisted breeding method is becoming increasingly useful in the improvement of new germplasm with drought stress tolerance.
        122.
        2015.12 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 표준강수지수(SPI)를 이용하여 우리나라의 과거 가뭄사상을 규모적 관점에서 정량적 평가를 실시하였다. 이를 위하여, 5대강 권역에 대한 가뭄사상의 지속기간, 규모, 평균심도를 연속이론을 바탕으로 산정하였다. 또한 과거 가뭄사상의 재현기간을 추정하고 가뭄 평균심도-지속기간-빈도 곡선을 작성하기 위하여 가뭄빈도분석을 실시하였다. 분석결과, 우리나라에 발생했던 심한 가뭄의 재현기간은 대부분 30∼50년으로 분석되었으며, 가뭄규모로 평가할 때 가장 가뭄이 심했던 해는 1988년과 1994년으로 나타났다. 특히, 1994년과 1995년에서는 2년 연속 가뭄이 발생하여 가장 극심했던 장기가뭄으로 분석되었다. 또한 2014년의 가뭄은 한강 권역을 중심으로 발생하였으며 가뭄의 규모와 평균심도 면에서 볼 때 우리나라 역사상 가장 극심했던 가뭄으로 평가되었다.
        123.
        2015.12 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 가뭄의 특성분석에 유리하며, 확률론적 접근이 가능한 은닉 마코프 모델(HMM) 기반의 가뭄 분석 기법을 적용하였다. HMM 기반의 가뭄의 심도뿐만 아니라 지속시간을 동시에 평가할 수 있도록 코플라 함수 기반의 이변량 가뭄빈도해석 기법을 도입하여 우리나라의 2015년 가뭄 빈도를 평가하였다. 가뭄빈도분석 결과 최근 40년 자료를 기준으로 영동지방에 비해 영서지방이 전체적으로 가뭄이 발생할 경우 가뭄의 심도가 큰 것으로 평가되었다. 심한가뭄의 발생 비율의 경우에 철원의 경우 10%를 상회하는 등 임진강 유역에서 상대적으로 심한가뭄의 발생비율이 크다는 것을 확인할 수 있었다. 한강유역 일부지점에서는 2014/2015년의 가뭄 지속기간 및 심도의 결합재현기간이 1,000년이 넘는 가뭄이 발생하고 있는 것으로 평가되었다. 특히 북한강 및 임진강 유역에 심한 가뭄이 발생하고 있으며 전반적으로 100년 이상의 기왕최대가뭄을 나타내고 있는 것으로 판단되었다.
        124.
        2015.07 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 ESP (Ensemble Streamflow Prediction)기법을 활용한 가뭄전망 체계를 구축하고 가뭄예보에 있어 활용성을 평가하였다. 과거 관측 수문기상 및 지형정보를 이용하여 우리나라 전역에 지면모델(Land Surface Model, LSM)을 구축하고 유출량(Historical Runoff, HR)을 생산하였다. 또한, 모의기간 동안 과거 30개 기상자료와 초기 토양수분량을 이용하여 선행시간별(1, 2, 3개월) 전망된 유출량(Predicted Runoff, PR)을 생산하였다. 평가결과 여름 및 가을철 보다 봄철 및 겨울철에 정확도가 높았으며, 1개월 전망 이후로는 정확도가 낮게 나타났다. 가뭄지수는 국내 가뭄해석에 있어 검증된 표준유출지수(Standardized Runoff Index, SRI)를 활용하였으며, PR_SRI을 산정 및 평가하였다. 1, 2개월 전망에서는 과거 HR이 고려되어 ESP HR에 비해 정확도가 크게 개선됨을 알 수 있었다. 선행시간별 상관계수는 평균 0.71, 0.48, 0.00, 평균제곱근오차는 0.46, 0.76, 1.01로 나타났으며, 건조기에 정확도가 높게 나타나 1, 2개월 전망까지는 ESP를 활용한 국내 가뭄예보의 활용성이 높다고 판단된다.
        125.
        2015.07 서비스 종료(열람 제한)
        Wheat-rye translocation lines are widely used in wheat breeding programmes by reason of biotic stress tolerances. Though there have been a number of researches regarding abiotic stress tolerance, the tolerance of the lines depends on wheat genetic background, not on rye chromosome. Here, we investigated wheat-rye translocation specific transcripts derived from cDNA-AFLP under drought stress, which may help to elucidate the reaction under the stress. ‘OK91G117’ (1BL.1RS translocation) and ‘OK91G144’ (non-translocation) were used as materials, which are near-isolines for 1RS. 25% PEG 6000 was added in culture solution to simulate drought condition and root tissues were sampled at each 0 h, 3 h, 6 h, 12 h, 24 h, and 48 h after PEG treatment for RNA extraction. As a result of cDNA-AFLP, TDFs (transcript derived fragments) that were specific to OK91G117 were sequenced. GO functions of each sequenced TDF were annotated by Blast2GO using standard parameter with cut-off level 3 and mapped to the GO term (i.e. biological process; BP, molecular function; MF, cellular component; CC). The term with “organic substance metabolic process”, “primary metabolic process”, and “cellular metabolic process” account for almost 50 % of BP. The most represented terms among probes classified to MF were “transferase activity” and most of TDF were annotated in “cell part” of CC. In addition, rye-chromatin specific markers were developed by BLAST comparing sequence of TDF with wheat and rye genome data. RT-PCR was conducted to validate expression patterns of selected TDF. Further studies will be needed to elucidate functions of the highly expressed genes under drought stress.
        126.
        2015.07 서비스 종료(열람 제한)
        Several E3 ubiquitin ligases have been associated with the response to abiotic and biotic stresses in higher plants. Here, we report that the hot pepper (Capsicumannuum) abscisic acid (ABA)-InsensitiveRINGprotein1gene(CaAIR1) is essential for a hypersensitive response to drought stress. CaAIR1 contains a C3HC4-type RING finger motif, which plays a role for attachment of ubiquitins to the target protein, and a putative transmembrane domain. The expression levels of CaAIR1 are upregulated in pepper leaves by ABA treatments, drought, and NaCl, suggesting its role in the response to abiotic stress. Our analysis showed that CaAIR1 displays self-ubiquitination and localized in the nucleus. We generated CaAIR1-silenced peppers via virus-induced gene silencing (VIGS) and CaAIR1-overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to ABA and drought. VIGS of CaAIR1 in pepper plants conferred an enhanced tolerance to drought stress, which was accompanied by low levels of transpirational water loss in the drought-treated leaves. CaAIR1-OX plants displayed an impaired sensitivity to ABA during seed germination, seedling, and adult stages. Moreover, these plants showed enhanced sensitivity to drought stress because of reduced stomatal closure and decreased expression of stress-responsive genes. Thus, our data indicate that CaAIR1 is a negative regulator of the ABA-mediated drought-stress tolerance mechanism.
        127.
        2015.07 서비스 종료(열람 제한)
        Drought and high salinity are the most important abiotic factors limiting plant development, growth, and crop productivity in agriculture (Munns and Tester 2008, Sengupta and Majumder 2009, Zhu 2002). As sessile organisms, plants are frequently exposed to drought and high salinity conditions, which alter water potential and cause osmotic stress, leading to serious damage to plant tissues (Bartels and Sunkar 2005, Boudsocq and Lauriere 2005). During exposure to water stress, plants display many physiological changes, such as reduction of water content, closure of stomata, and decreased cell enlargement and growth. In addition, severe and continuous water stress in plants causes the cessation of photosynthesis and disturbance of metabolism, and finally results in death (Nath et al. 2005, Shao et al. 2008). To adapt to these abiotic stress conditions, plants show a variety of responses, including the accumulation of abscisic acid (ABA) and expression of a large number of stress-related proteins (Krasensky and Jonak 2012, Lee and Luan 2012, Skriver and Mundy 1990, Stewart and Lee 1974). Although the cellular and molecular responses to environmental stress are well studied (Hasegawa et al. 2000, Thomashow 1999), the mechanisms underlying the functional modifications caused by osmotic stress are yet to be clarified, because of the complexity at the cellular level as well as at the whole plant level (Ashraf and Harris 2004, Flowers 2004, Foolad et al. 2003a, 2003b, Xiong et al. 2002).
        128.
        2015.07 서비스 종료(열람 제한)
        Plants are constantly exposed to a variety of biotic and abiotic stresses, which include pathogens and conditions of high salinity, low temperature, and drought. Abscisic acid (ABA) is a major plant hormone involved in signal transduction pathways that mediate the defense response of plants to abiotic stress. Previously, we isolated Ring finger protein gene (CaRING1) frompepper(Capsicum annuum), which is associated with resistance to bacterial pathogens, accompanied by hypersensitive cell death. Here, we report a new function of the CaRING1 gene product in the ABA-mediated defense responses of plants to drought stress. The expression of the CaRING1 gene was induced in pepper leaves treated with ABA or exposed to drought or NaCl. CaRING1-overexpressing (OX) transgenic plants showed enhanced sensitivity to ABA during the seedling growth and establishment. Furthermore, these plants were more tolerant to drought stress than the wild-type plants because of enhanced stomatal closure and increased expression of stress-responsive genes. Together, these results suggest that the CaRING1 acts as positive factor for drought tolerance in Arabidopsis by modulating ABA-mediated stomatal closing and gene expression.
        129.
        2015.07 서비스 종료(열람 제한)
        In plants, lipoxygenases (LOXs) are involved in various physiological processes, including defense responses to biotic and abiotic stresses. Our previous study has shown that pepper 9-LOX gene, CaLOX1, plays a crucial role in cell death due to pathogen infection. Here, the function of CaLOX1 in response to osmotic, drought, and high salinity was examined using CaLOX1-overexpressing (CaLOX1-OX) Arabidopsis plants. Changes in the temporal expression pattern of the CaLOX1 gene were observed when pepper leaves were treated with drought and high salinity, but not with abscisic acid (ABA), the primary hormone in response to drought stress. During seed germination and seedling development, CaLOX1-OX plants were more tolerant to ABA, mannitol, and high salinity than wild-type plants. In contrast, expression of the ABA-responsive marker genes RAB18 and RD29B was higher in CaLOX1-OX Arabidopsis plants than in wild-type plants. In response to high salinity, CaLOX1-OX plants exhibited enhanced tolerance, compared with wild-type, which is accompanied by decreased accumulation of H2O2 and high levels of RD20, RD29A, RD29B, and P5CS gene expressions. Similarly, CaLOX1-OX plants were also more tolerant than wild-type plants to severe drought stress. H2O2 production and relative increase of lipid peroxidation were lower, and the expression of COR15A, DREB2A, RD20, RD29A, and RD29B was higher in CaLOX1-OX plants, relative to those of wild-type plants. Taken together, our results indicate that CaLOX1 plays a crucial role in plant stress responses by modulating the expression of ABA- and stress-responsive marker genes, lipid peroxidation, and H2O2 production.
        130.
        2015.07 서비스 종료(열람 제한)
        In here, we screened drought tolerant varieties with modified leaf water loss rate assay and visual drought tolerant phenotype in the greenhouse conditions with more than 800 varieties. Among these varieties, Samgang, Gumei4 and Apo showed the lowest of leaf water loss rate and strong drought tolerant phenotype. To identify drought QTLs with Samgang variety, we developed the doubled-haploid (DH) population consist of 101 lines derived from a cross the drought tolerant cultivar Samgang and the drought sensitive cultivar Nagdong. To score the drought phenotype degrees of this population, we withheld water for 6 weeks and treated the watering for 7 days. After watering, visual phenotype was observed 1 to 9 degree according to the standard evaluation system for rice, IRRI. Drought sensitive parent Nagdong was almost died and was scored as 9 degree, while tolerant parent Samgang showed slightly leaf tip drying phenotype and was scored as 3 degree in our experimental conditions. Three main QTLs were detected on chromosome 2, 6, and 11 with this visual phenotype. We also measured relative water contend of these population under drought stress conditions, and got one main QTL on chromosome 11. The QTL loci on chromosome 11 with flanking markers RM26755-RM287 has a function for visual phenotype and relative water content under drought conditions.
        131.
        2015.07 서비스 종료(열람 제한)
        The maize genome is complex with exceeding the levels of intra-specific variation, repetitive DNA content, and allelic content observed between many species. Because of tremendous diversity and variants, maize is considered as a forefront crop development and estimation of molecular markers for agricultural trait in genetics and breeding. Using quantitative trait loci (QTL) and marker assisted breeding (MAS), molecular breeders are able to development of drought tolerance and grain yield in maize genotype. To study QTL congruency, a meta QTL analysis including results from eight-teen QTL publications for grain yield and drought tolerance were considered. Among them, we assembled 420 QTLs for abscisic acid (ABA) concentration, anthesis silking interval (ASI), days to flower, days to silk, ear number, kernel number, grain number and grain yields, involved in drought tolerance and grain yield. The meta QTL analysis revealed significant evidence for linkage of these traits to 39 different segments as candidates regions on maize genome. A total of 571 marker was selected as QTL or integrated QTL markers for narrowing down the QTL region into specific functionally relevant candidates. The results of meta QTL analysis helped to refine the genomic regions of agricultural traits, interest described and provided the closest flanking markers.
        132.
        2015.07 서비스 종료(열람 제한)
        As sessile organisms, plants have evolved mechanisms that allow them to adapt and survive periods of various environmental stresses including high salinity and drought. The ubiquitin-proteasome system (UPS) is an integral player in plant response and adaptation to various abiotic stresses. Understanding UPS function has centered mainly on defining the role of E3 ubiquitin ligases, which are the substrate-recruiting component of the ubiquitination pathway. Here, we report on Ring finger E3 ligase, Oryza sativa salt- and drought-induced RING finger protein1 gene (OsSDRFP1) in defense responses to osmotic stresses. Results of qRT-PCR and In vitro ubiquitination assay demonstrated that OsSDRFP1 act as an E3 ligase in response to salt and drought stresses. in this study, Subcellular localizations showed that the OsSDRFP1 was observed in cytosol (66%) and nucleus (34%) under non-treated conditions. However, the florescence signals of rice protoplasts after salt treatments detected in nucleus (60%) higher than in cytosol (30%). The Arabidopsis plants overexpressing OsSDRFP1 clearly exhibited hypersensitive responses to salt stress. whereas, OsSDRFP1-overexpressing plants were more tolerant to both drought- and ABA-stresses than the wild-type plants. These results might suggest that OsSDRFP1 has a dual function as a regulator of high salt- and drought-stresses.
        133.
        2015.07 서비스 종료(열람 제한)
        Salt and drought stresses affect virtually every aspect of plant physiology and metabolism and thus limiting the productivity of crop plants worldwide. Salt and drought tolerance and adaptation in rice has been improved by engineering various genes related to transcription, signaling, accumulation of antioxidants and compatible solutes etc. Previously, we have produced 2,000 non-GM mutants induced by Tos17 in rice. We analyzed >2,000 flanking sequences of newly transposed Tos17 copies by the adaptor-ligation PCR method. We also identified significantly up- or down-regulated genes under drought, salt, or ABA stress in rice based on expression microarray data, which previously were performed from leaf at different developmental stages and conditions. For screening and characterizing the salt or drought tolerance mutations by extensive phenotypic analysis as well as the functional analysis of genes, we selected 133 mutant lines. To evaluate rice phenotypic traits under abiotic stress condition, we plan to investigate phenomics, which integrates technologies such as photonics, biology, computers, and robotics.
        134.
        2015.07 서비스 종료(열람 제한)
        Understanding the response of a crop to water deficiency is the first step towards breeding drought-tolerant varieties. In this study, inbred maize (Zea mays L.) lines KS140 and KS141 were subjected to drought stress by withholding water for 10 days at the V5 or V6 leaf stage. Water-deficient plants experienced a decrease in relative leaf water content, stomatal conductance, net CO2 assimilation rate, and water use efficiency compared to well-watered plants. This was accompanied by a decrease in the relative leaf water content that resulted in severe growth retardation in KS140 and KS141. However, leaf chlorophyll content in KS140 was unchanged. To understand the proteome dynamics during the 10-day drought stress in maize leaves, comparative proteome analysis was carried out between the well-watered and water-withheld leaves. Differential expression was observed for 29 protein spots from KS140 and 14 protein spots from KS141, and these were identified using MALDI-TOF mass spectrometry. Among identified proteins, metabolism and stress related proteins were highly were increased by drought stress. This study provides a protein profile of a Korean maize inbred line during drought stress, which will be valuable for future studies of the molecular mechanisms underlying drought resistance and for development of selective breeding markers for drought tolerance in maize.
        135.
        2015.07 서비스 종료(열람 제한)
        Drought stress is one of the major stresses affecting growth and productivity in rice. Drought tolerance is a complex trait governed by quantitative trait loci(QTLs) making it difficult to understand mechanisms underlying it. We generated a set of 55 introgression lines via backcrosses using Milyang23, the Korean Tongil-type rice variety as the recurrent parent and Oryza glaberrima (IRGC Acc. No. 103544) as a donor parent. 139 SSR markers were used to genotype 55 introgression lines. The 55 introgression lines with Milyang23 were evaluated for physiological traits such as fresh shoot weight (FSW), fresh root weight (FRW) and dry shoot weight (DSW) under the control and 30% PEG-treated condition. Three lines (IL9, IL12, and IL55) showing significant difference with Milyang23 were selected for further analysis. Genotyping revealed that three lines had four, four and two O. glaberrima homozygous segments, respectively. IL9 performed better than Milyang23 in all traits measured in the 30% PEG-treated condition. IL9 possessed four O. glaberrima introgressions on chromosomes 1, 2, 6 and 7. IL12 performed better than Milyang23 in FSW and FRW and contains four O. glaberrima introgressions on chromosomes 3 and 6. IL55 contains two O. glaberrima introgressions on chromosomes 2 and 6. Three lines shared the O. glaberrima segment delimited by markers RM133-RM225 at chromosomes 6. This region corresponds to the QTL region for drought tolerance reported by other previous studies. Although IL9 and IL12 showed improved drought tolerance at the seedling and vegetative stage, they performed poor under the drought stress at the reproductive stage implying that the level of drought tolerance differs according to the growth stage in rice. IL55 was not significantly different from Milyang 23 in SPP and FER and had significantly higher no. of the total grain than Milyang 23. This result seems to indicate that IL55 will be a good resource for drought tolerance breeding. The population would be useful not only in developing drought tolerant lines in the breeding program but also in fine-mapping the genes/QTLs for drought tolerance.
        136.
        2015.07 서비스 종료(열람 제한)
        Onion and other Allium vegetables have been valued since antiquity for their pungent flavor and aroma. Modern science has confirmed traditional benefits that the organosulfur compounds that impart flavor also confer significant human health benefits such as reduced blood clotting and antimicrobial properties. Glucose, fructose and sucrose comprises majority of onion bulb dry matter content. The sugars, pyruvic acid accumulation and transcript level of some transcription factors involved in the biosynthesis of high sugars and pyruvic acid. These profiles were compared with two different lines 36101 (early) and 36122(Late) of bulb onion (Allium cepa L.) growing under drought and photoperiod condition using High Performance Liquid Chromatography (HPLC) and Quantitative real time PCR using FT genes. We identified the gene AcFT4 was responsible for early and late bulb intiation in the onion lines. The cultivar lines 36101and 36122 were used to identify potential genes controlling pungency and sugar. The comparative analysis of two lines showed significant positive phenotypic and genetic correlations. Sugar and pungency profile showed significant difference between two lines. FT gene expression and pungency level was high in onion lines during drought stress. In this study, we proposed the biochemical characterization of two line and genes involved in the bulb formation were also studied. There is a correlation between sugars and pungency level during the drought stress. These results could be presumably used as useful information to obtain onion varieties rich in sugars and pungency.
        137.
        2015.03 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 밀양23호의 배경에 O. glaberrima의 특정 염색체단편을 가지는 55 이입계통의 내건성 관련 형질을 조 사하여 변이를 검정하고 내건성이 향상된 4 계통을 선발하였 다. 특히 IL55는 유묘기, 영양생장기 그리고 생식생장기에서 반복친인 밀양23호에 비해 조사된 내건성 형질에서 우수한 특성을 보였으며 내건성 관련 유전자의 분석 및 교배모본으 로 이용될 수 있을 것이다. 이입계통들은 밀양23호의 유전적 배경에 각 계통마다 서로 다른 O. glaberrima 단편이 이입된 계통으로, 이 집단은 O. glaberrima에서 유래된 내재해성 및 작물학적으로 유용한 유전자의 탐색에 효율적인 도구가 될 것이다.
        138.
        2015.03 KCI 등재 서비스 종료(열람 제한)
        The objective of this study was to evaluate the drought tolerance in maize seedling using leaf rolling. Nineteen maize resources, seven Nested Association Mapping parents lines, six Korean commercial cultivars, and six Southeast Asia commercial cultivars, were used to examine drought tolerance. The leaf rolling scores were measured on each leaf in three stress conditions with moderate drought (10%), severe drought (7%), and extreme drought (5%). Generally leaf rolling score of seedlings increased at the lower soil water potentials (5~7%). As a result, drought-tolerant cultivars showed lower leaf rolling score (below 2.5) than the drought sensitive cultivars (above 3.5). Nine varieties, NK4043, CML322, DK9955, NK4300, Ki11, DK8868, CML228, LVN99, and LVN10, have been selected for tolerance to drought stress. These results suggest that the leaf rolling score in maize seedling has been made available to indirect index for drought tolerance.
        139.
        2015.02 서비스 종료(열람 제한)
        가뭄은 홍수, 산사태, 강풍 피해 등 단기간에 집중적으로 영향을 끼치는 자연재해와 달리 장기간에 걸쳐 느린 속도로 영향을 미치게 된다. 광역적인 피해를 주는 가뭄은 시점과 종점을 정확히 파악하기 어렵고 진행방향을 예측하는 데에 한계점을 갖기 때문에 가뭄의 심도를 정량화 할 수 있는 연구가 진행되고 있다. 그리하여 본 연구에서는 광역적 관측이 가능한 인공위성 자료를 활용하여 가뭄 지수를 산정하였으며 이를 통해 2014년 우리나라에서 발생한 가뭄 상황을 평가 하였다. 미항공우주국(NASA)의 다중분광센서인 MODerate resolution Imaging Spectroradiometer(MODIS)의 다양한 산출물을 통해 수문기상인자 기반의 가뭄지수인 Evaporative Stress Index(ESI)를 산정하였으며 이를 지점기반의 가뭄지수인 표준강수지수(Standardized Precipitation Index, SPI), 파머가뭄지수(Palmer Drought Severity Index, PDSI)와 강우량과의 시계열 비교를 통해 ESI의 국내 적용성 및 가뭄 상황을 분석하고자 하였다. 이는 인공위성 기반의 산정된 가뭄 지수를 통한 지역적인 가뭄 분석을 통해 지점 기반의 가뭄 지수가 지닌 한계점을 극복하고 각 지역에 따라 차별화된 가뭄 방재 대책을 세우는 데에 도움을 줄 수 있을 것이다.
        140.
        2015.02 서비스 종료(열람 제한)
        단기간에 발생하는 홍수와 달리 가뭄은 긴 시간 동안 큰 피해를 발생시키기 때문에 가뭄을 효과적인 예측하는 것은 매우 중요하다. 현재까지 제안된 여러 가뭄지수들은 사전에 정의된 등급을 이용하기 때문에 대상자료 자체에 내재된 불확실성을 고려하지 못하고 있다. 본 연구에서는 월 강우량 자료를 이용하여 내재되어 있는 불확실성을 고려할 수 있는 은닉 마코프 모형(Hidden Markov Model, HMM)을 이용하여 기상학적 가뭄을 확률론적으로 평가하였다. 기상청에서 제공하는 1973년부터 2012년까지의 일 강우량 자료와 기후변화정보센터(Climate Change Information Center)에서 제공하는 2013년부터 2100년까지의 기후변화 시나리오(RCP 8.5) 기반 월강우량 자료를 대상으로 총 128년간의 강우량 자료에 HMM에 적용하고 가뭄현상을 분석하였다. 본 연구에서 제안된 은닉 마코프 가뭄지수(Hidden Markov based Drought Index, HMDI)는 자료에 내재된 불확실성을 이용하여 가뭄의 상태를 분류할 수 있으며, 이는 SPI와 같은 기존의 가뭄지수와 달리 특정 시점에서 각 은닉상태들이 나타날 확률로 표현되었다. 또한 HMDI를 이용하여 미래 기상학적 가뭄의 계절·기간별 발생특성과 가뭄위험도를 분석하였다.