도심지에 시공된 아스팔트 포장은 교통량 증가와 중차량의 가감속으로 인해 포트홀 및 소성변형 등의 파손이 흔히 발생하고 있다. 이러한 아스팔트 포장의 파손을 최소화하기 위해 콘크리트 포장으로 전환하는 공법인 초속경 시멘트 콘크리트 포장 공법과 프리캐스 트 콘크리트 포장 공법이 있으나 고비용으로 인해 널리 적용하기에는 한계가 있는 실정이다. 최근 서울시에서는 신설 중앙버스정류장 에 현장타설 방식으로 연속철근 콘크리트 포장(CRCP)을 시공하였다. 본 연구에서는 인력포설 방식으로 시공한 중앙버스정류장의 CRCP에 대한 공용성을 분석하고자 온도계, 균열유도장치, 철근 변형률계, 콘크리트 변형률계, 변위계, 균열계 등을 포함하는 계측시스 템을 구축하였으며 본 논문에서는 이러한 계측시스템에 대하여 기술한다.
스마트팜 요소들 중에서 중요한 요인 중 하나는 환경 계측이 다. 본 연구에서는 오픈 소스 프로그램인 아두이노, 앱 인벤터 와 노드 레드를 이용하여 로라와 블루투스 무선 통신을 통한 환 경 계측 모니터링 시스템을 설계하였다. 이 시스템은 아두이 노, 로라 쉴드, 온습도 센서(SHT10), 이산화탄소 센서(K30) 로 구성되었다. 아두이노(Arduino) 프로그램에서 사용된 라 이브러리로는 LoRa.h, Sensirion.h, LiquidCrystal_I2C.h와 K30_I2C.h를 사용하였다. 일정한 주기로 센서에서 환경 데 이터를 받을 때, 데이터의 안정화를 위해 평균값을 사용한 코 딩을 사용하였다. 사용자 인터페이스로 노드 레드와 앱 인벤 터 프로그램을 이용하여 안드로이드 기반의 앱을 개발하였다. 아두이노의 시리얼 화면과 스마트 폰의 화면 및 노드 레드의 사용자 인터페이스에 출력되는 화면으로 센서에 위한 환경 자 료가 잘 수집되어 디스플레이되는 것을 볼 수 있었다. 이러한 오픈소스 기반의 플랫폼과 프로그램들은 다양한 농업 응용 분 야에 적용될 것이다.
In this study, a structural health monitoring system for cable-stayed bridges is developed. In the system, condition assessment of the structure is performed based on measured records from seismic accelerometers. Response indices are defined to monitor structural safety and serviceability and derived from the measured acceleration data. The derivation process of the indices is structured to follow the transformation from the raw data to the outcome. The process includes noise filtering, baseline correction, numerical integration, and calculation of relative differences. The system is packed as a condition assessment program, which consists of four major processes of the structural health evaluation: (i) format conversion of the raw data, (ii) noise filtering, (iii) generation of response indices, and (iv) condition evaluation. An example set of limit states is presented to evaluate the structural condition of the test-bed and cable-stayed bridge.
본 연구는 기존에 사용하여 왔고, 최근에 온습도의 정확도를 검증하였던 강제 흡출식 복사선 차폐장치(Aspirated Radiation Shield; ARS)를 이용하여 모 기업(A 회사)에서 개발한 시스템의 성능을 개선하고, ARS 장치의 풍속이 온습도에 미치는 영향에 대해서도 시험적으로 검토하였다. 그 결과를 요약하면 다음과 같다. A 회사 제품의 시스템을 개선하기 전, A 회사 시스템의 온도는 ARS 장치로 측정한 온도보다 최대 10.2℃정도 높았고, 상대습도는 20.0%정도 낮게 나타났다. 시스템을 개선한 후, 노드 1, 2의 온도 및 상대습도는 거의 일치하는 것으로 나타났다. 개선 후의 노드 2와 ARS 장치로 측정한 온도간의 최고, 평균 및 최저온도를 포함한 온도편차는 각각 0.2~0.7℃정도로써 ARS 장치가 약간 낮거나 높게 나타나는 경향이 있었다. 상대습도의 경우, 일몰 직후 ARS 장치의 상대습도가 약 10.0%정도 높게 나타나는 경향이 있었지만, 그 이외에는 평균적으로 1.9%정도 ARS 장치가 약간 낮게 나타나는 경향이 있었다. 그리고 노드 1을 최소-중간 사이, 중간-최대 사이 및 최대로 설정한 경우, 노드 1, 2의 최고, 평균 및 최저온도를 포함한 편차는 각각 0.1~0.4℃, 0.0~0.2℃ 및 0.0~0.5℃정도였다. 그리고 노드 1의 3개 측점과 ARS 장치의 최고, 평균 및 최저온도를 포함한 편차는 각각 0.2~0.5℃, 0.1~2.2℃ 및 0.1~1.1℃정도의 범위로써 풍속의 크기에 따른 온도편차는 아주 미미한 것으로 나타났다. 또한 선행연구 및 본 연구의 결과를 종합하여 보면, 온도오차를 개선하기 위한 적정 풍속은 1.0~2.0m·s-1 정도의 범위일 것으로 판단되었다.
백두산에서는 밀레니엄 대분화 이후로도 수차례의 화산활동이 계속되어 마그마 거동 감시 연구의 필요성이 지속적으로 제기되고 있다. 마그마방의 깊이 및 규모를 파악하기 위해서는 다양한 지구물리학적 접근이 필요하며, 본 연구에서는 전기비저항 탐사의 적용성을 검토하고자 한다. 국경으로 인해 공간적 제한이 있는 백두산에서 심부에 위치한 마그마를 탐사하기 위해서는 측선의 길이가 수십 킬로미터 이상이 되는 대규모 전기탐사가 이루어져야 하며, 이를 위해 서는 분산계측 시스템의 도입과 이에 최적화된 탐사 설계가 필수적으로 요구된다. 따라서 자체 개발된 분산계측 시스템을 활용하는 탐사설계안을 제시하고 전산실험을 통해 적용 가능성을 분석하였다. 단일 측선과 비동일선상 송신원 배열을 사용한 탐사설계안을 이용하여 다수의 측선 설치가 필요한 일반적인 3차원 탐사에 준하는 역산 해석 결과를 얻을 수 있음을 확인하였으며, 이 탐사설계안이 백두산 심부 물리탐사에 유용하게 적용될 수 있을 것으로 기대된다.
본 연구는 기존에 사용하여 왔고, 최근에 온습도의 정확도를 검증하였던 강제 흡출식 복사선 차폐장치 (Aspirated Radiation Shield; ARS)와 모 기업(A 회사)에서 개발한 시스템으로 측정한 온습도를 비교하여 성능을 검토한 후, 시스템의 성능을 개선할 목적으로 수행되었다. 그 결과를 요약하면 다음과 같다. 딸기의 무성도가 두 계측시스템에 영향을 미친 경우를 제외하면, 전체적으로 볼 때 플레이트 2개의 시스템이 1개보다 복사선 차폐효과가 미미하지만 좋은 것으로 나타났다. 그리고 A회사의 시스템과 ARS장치로 측정한 최고온도의 전체적인 범위는 각각 20.5~53.3oC 및 17.8~44.1oC정도로써 A사 제품이 2.7~9.2oC정도 높게 나타났고, 일별 최대 편차는 12.2oC 정도였다. 평균온도의 경우, 두 기관의 전체적인 범위는 각각 12.4~38.6oC 및 11.8~32.7oC정도로써 A사 시스템이 0.6~5.9oC정도 높게 나타났고, 일별 최대 편차는 6.7oC정도 였다. 최저온도의 경우도 각각 4.2~28.6oC 및 2.9~26.4oC정도로써 A사 제품이 1.3~2.2oC정도 높게 나타났고, 일별 최대 편차는 2.9oC정도로써 두 기관의 장치로 측정한 온도에 편차가 있는 것으로 나타났다. 또한 상대습도의 경우, A회사와 ARS장치로 측정한 평균상대습도의 전체적인 범위는 각각 52.9~93.3% 및 55.3~96.5%정도로써 A회사의 시스템이 ARS장치보다 2.4~3.2%정도 낮게 나타나는 경향을 보였다. 그러나 일별로 비교하여 보면, 최대 18.0%정도 A회사의 시스템이 낮게 나타나는 날도 있었다. 결국 상대습도 도 온도와 마찬가지로 미미하긴 하지만 두 기관의 장치로 측정한 온도에 편차가 있는 것으로 나타났다.
슬로싱과 같은 액체의 동적 거동을 측정하고 제어하는 연구가 다양한 공학분야에서 활발히 진행중이다. 건축공학분야에서 도 건축물의 풍진동을 저감시키는 동조액체감쇠기의 연구에 액제 진동이 측정되고 있다. 본 논문에서는 기존 파고 측정 센서의 한계를 극복하기 위하여 레이저 장비 중 LDV와 스캐닝 장비 중 갈바노미터스캐너를 이용하여 동조액체감쇠기 내의 액체 진동을 측정하는 방법을 제안하고 검증하였다. LDV가 속도와 변위를 측정하는 원리를 기술하였고 갈바노미터스캐너의 구동 원리에 따라 LDV의 단일 포인트로 다점측정이 가능한 시스템을 구성하였다. 동조 액체감쇠기의 4점 액체 진동을 측정하여 각 점의 시간 영역 데이터를 기존에 사용하던 비디오 센싱 데이터와 비교하였고 파형 분석을 통해 진행파와 정상파를 구별할 수 있음을 확인하였다. 또한 측정 딜레이가 있는 데이터를 상호 상관을 취하여 특이값 분해를 하고 이론 및 비디오 센싱 결과와 일치하는 고유진동수와 모드형상을 도출하였다.
본 논문에서는 이단계 칼만필터를 활용한 구조물의 3 자유도 동적변위 계측 시스템을 소개한다. 개발 시스템은 센서 모듈, 베이스 모듈, 컴퓨테이션 모듈로 구성되어 있다. 센서 모듈은 100Hz 샘플주파수의 고정밀 가속도를 계측하는 포스피드백 가 속도계와 10Hz의 샘플주파수의 저정밀도의 속도, 변위를 계측하는 저가의 RTK-GNSS로 구성되어 있다. 계측된 데이터는 LAN 케이블을 통하여 컴퓨테이션 모듈로 전송되고, 컴퓨테이션 모듈에서 이단계 칼만필터를 활용하여 100Hz 샘플주파수의 고정밀 변위를 실시간으로 산정한다. 개발 시스템의 변위 계측 정밀도를 검증하기 위해 미국, 캘리포니아에 위치한 San Francisco-Oaklmand Bay bridge 에서 현장 실험을 수행하였으며, 실험 결과 1.68mm RMS 오차를 보임을 확인하였다.
작물생육의 품질 및 생산량에 중요한 영향을 미치는 온실 내 환경관리에 대한 연구는 활발히 진행되고 있다. 주로 온실 내 환경분포를 측정하는 방법으로는 한 두 지점에 대해서만 측정하여 온실 전체를 관리하는 시스템 으로 이루어졌으며 기존 환경데이터 측정방식은 각각의 데이터 로거 및 센서간의 배선들로 인하여 복잡한 시스템으로 구성되었다. 본 연구에서는 온실 내 설치 된 각 환경센서들로부터 지점별 데이터를 획득하고 획득된 데이터는 모니터링 프로그 램을 통하여 공기유동흐름을 측정하는 장치를 개발하였다. CAN 네트워크 통신을 통하여 환경센서들의 배선 토폴로 지를 간소화 했으며 프로토콜의 견고함으로 온실 내 모니 터링을 안정적으로 데이터를 수집할 수 있도록 구현되었다. 온실 내 공간의 환경요인 분포(온·습도 및 풍속 등) 들을 12개 지점에 배치하고 온·습도 및 풍속의 환경 데이 터는 상세히 파악할 수 있도록 X, Y, Z 축으로 다수의 측 정점(총 36점)을 선정하였다. 데이터 손실 및 다양한 온실 조건을 고려하여 비트레이트를 저속 125kbit/s로 구현하여 온실 내 100m 구역내에서 센서를 추가적으로 연장(총 90 개)할 수 있도록 구축되었다. 온도, 습도, 일사량, 풍향, 풍 속, 대기압 및 강우량 등 측정된 데이터는 LabVIEW에 연 동되어 실시간으로 센서 정보 출력이 가능하도록 구현되었다. 온실 내 환경 분포는 사용자의 편의에 따라 환경분포를 수평(XZ), 수직(YZ)축으로 가시화 할 수 있으며, 보간의 범위를 원하는 값으로 설정하여 보간 할 수 있도록 구현되었다. 추후에 온실 내의 공간에 따라 온도, 습도, 풍속, CO2 등의 환경 측정 실험을 통하여 CFD 모델링과의 검증 및 비교에 활용할 수 있을 것으로 판단된다.
본 연구에서는 보다 넓은 범위에서 영상기반 변위계측 시스템의 동특성 추정 신뢰성을 확보하기 위해 Shaking Table을 이용해 넓은 대역의 진동수와 진동수별 다양한 진폭에 대한 Sine Wave 동적실험을 실시하였다. 영상기반 변위계측을 위해 DDVS(Dynamic Displacement Vision System) 기법을 활용하였으며, DDVS 기법을 통해 구한 동적변위는 기존의 접촉·비접촉식 센서인 LVDT(Wire Type, Pole Type)과 LDS의 변위계측 결과와 비교하여 그 오차를 분석하였다. 구해진 동적변위를 FFT하여 진동수 영역에서의 정확도 비교도 함께 수행하였다. 4가지 타입의 계측센서 모두 동적변위계측 결과 최대 변위 도달 및 주기 운동 계측에 있어 대체적으로 유사한 결과를 나타냈으며, 특히 영상기반의 DDVS 기법과 LDS를 통한 계측 결과는 높은 상호 일치성을 보였다. LDS와의 비교를 통한 오차분석 결과, DDVS 기법에 의한 동적변위 계측의 정확도는 계측 대상의 진동수에 영향을 받는다고 판단되었다. 동일 가진 진동수 내에서 가해준 변위 변화에 의한 오차는 미미하였으나, 동일 발생 변위에서는 가진 진동수가 커질수록 오차 값이 증가하였다. 기존 센서인 LVDT 경우, 발생 변위가 작을 때 상대적으로 큰 오차를 나타냈으며, 이를 통해 진동계측과 같은 작은 동적변위의 계측에 한계가 존재한다고 판단된다.
본 연구에서는 마커없이 구조물의 변위를 측정할 수 있는 영상기반 변위계측 시스템(NVDMS)을 제안한다. 기존의 방식 과 제안하는 NVDMS는 크게 두 가지의 차이점이 있다. 첫째, NVDMS는 마커를 사용하지 않고 구조물의 특징점의 픽셀좌 표 변화를 추출한다. 둘째, 특징점의 픽셀좌표를 물리좌표로 변환하는 scaling factor는 기존 방식에선 마커의 크기로부터 계 산되는 반면, NVDMS에서는 카메라와 구조물사이의 거리, 각도, 초점거리로 계산된다. 3층 축소모형의 자유진동 실험에서 제안한 NVDMS로부터 얻은 변위데이터의 신뢰도를 분석하기 위해 LDS로부터 얻은 변위데이터의 비교를 하였으며, 얻어진 변위데이터를 이용하여 동특성을 분석하였다. 분석결과 NVDMS는 마커없이 구조물의 동적변위를 정밀하게 측정가능할 뿐 만 아니라 얻어진 변위데이터로부터 추출한 동특성의 신뢰도 또한 높았다.
본 연구에서는 마커없이 구조물의 변위를 측정할 수 있는 영상기반 변위계측 시스템(NVDMS)을 제안한다. 기존의 방식과 제안하는 NVDMS는 크게 두 가지의 차이점이 있다. 첫째, NVDMS는 마커를 사용하지 않고 구조물의 특징점의 픽셀좌표 변화를 추출한다. 둘째, 특징점의 픽셀좌표를 물리좌표로 변환하는 scaling factor는 기존 방식에선 마커의 크기로부터 계산되는 반면, NVDMS에서는 카메라와 구조물사이의 거리, 각도, 초점거리로 계산된다. 3층 축소모형의 자유진동 실험에서 제안한 NVDMS로부터 얻은 변위데이터의 신뢰도를 분석하기 위해 LDS로부터 얻은 변위데이터의 비교를 하였으며, 얻어진 변위데이터를 이용하여 동특성을 분석하였다. 분석결과 NVDMS는 마커없이 구조물의 동적변위를 정밀하게 측정가능할 뿐만 아니라 얻어진 변위데이터로부터 추출한 동특성의 신뢰도 또한 높았다.
Virtual metrology(VM) is a promising technology which can convert off-line sampling inspection into on-line total inspection at the manufacturing process. This paper provides an economic evaluation model of VM system which predicts the defects of a target process with Bernoulli sampling inspection. For this purpose, we build M/G/1 queueing models of two systems. One is VM non-applied system and the other is VM applied one. We derive total costs per unit time of each system and conduct sensitivity analysis according to variations of input parameters such as defect rates, various process costs and VM prediction error rates. The proposed analysis model is expected to be used for evaluating economic values of VM system implementation projects.