The objective of this study was to achieve biological control of green mold disease in Pyogo mushrooms using antagonistic microorganisms. Bacillus subtilis BSM320 cells inhibited mycelial growth by 48–60% against three Trichodermaisolates including T. hazianumisolated from the substrates of Lentinula edodes, showing their antifungal activity.The bacteria were cultured to a high density of 4.2 x 109±113.7 cfu/mlin aqueous extract of composted spent mushroom substrates of L. edodes containing 1% glucose and showed a higher growth rate than that observed when using the commercial medium, Luria-Bertani broth. The bacterial culture showed a 75% protective effect without damaging the mushroom fruiting bodies. These results suggest that B. subtilis BSM320culture is suitable for biological control of green mold disease during mushroom cultivation.
본 연구는 고밀도폴리에틸렌 코편을 마스크에 적용 후 MRI 검사에 사용하여 SNR의 변화를 측정하고 만족도를 평가하였다. 연구 방법은 팬텀을 이용하여 HDPE 마스크 적용 전 후의 SNR 측정과 KF 94 마스크 적용 전 후의 SNR 측정을 하였고, 사용한 기법은 T1WI, T2WI, DWI였다. 또한 HDPE 마스크 착용군의 T2 mDixon, 3D T1영상 획득 후 안와와 교뇌의 SNR을 측정하였고, 설문을 통하여 MRI 검사 시 답답함 정도와 호흡의 용이성, HDPE 마스크의 선호도 평가를 하였다. 팬텀 실험 결과 HDPE 마스크 사용 전과 후의 SNR은 유의한 차이가 없었으며(p>0.05), KF 94 마스크는 적용 전 값과 유의한 차이가 있었다(p<0.05). HDPE 마스크 착용군의 SNR 측정 결과에서는 미착용군과 유의한 차이는 없었다(p>0.05). 마스크 착용 후 답답한 정도 측정 결과 착용군은 3.53 ± 0.73, 미착용군은 3.83 ± 0.75이었고, 호흡의 용이성 측정 결과 HDPE 마스크 착용군은 3.1 ± 0.89, 미착용군은 3.27 ± 0.91으로 나타났고, 두 조사 결과 모두 유의한 차이는 없었다(p>0.05). HDPE 마스크의 선호도는 4.48 ± 0.54으로 선호도가 높은 것으로 나타났다. 본 연구 결과 HDPE 마스크는 착용 후에도 MRI 영상의 신호 변화 없이 정확한 검사가 가능하고 환자의 만족도 또한 높게 평가되었기에 검사 중 호흡기 감염 예방을 위해 적극적으로 사용되어야 할 것으로 사료된다.
개(Canis lupus familiaris)는 인간의 소외 현상을 개선하고, 공동체 생활 의식 향상에 기여하는 반려동물이다. 반려견 품종을 명확히 관리하는 것은 유전병을 감소시키거나, 형질 개량, 종 다양성 유지 등을 위해 중요하다. 본 연구에서는 고밀도 SNP 칩 유전자형 데이터와 기계학습 기술을 이용하여, 유전자형 데이터에 기반한 품종 식별이 가능한지, 가능하다면 최소 몇 개의 유전마커로 품종 식별을 유의하게 수행할 수 있는지 확인하기 위하여, 반려견 11 품종 226두의 23K SNP 칩 데이터를 분석하였다. 9종의 기계학습 다중범주 분류 알고리즘과 2종의 특징 선택 방법의 성능을 비교하여, 선형 서포트 벡터 머신 분류기와 주성분 분석 특징 기여도를 이용한 특징 선택 방법을 이용했을 때, 11종의 반려견 품종을 90% 이상 정확도로 식별하였으며, 이 때 40개의 유전마커가 필요함을 확인하였다. 최종 선발 된 40개의 반려견 품종 식별 유전마커는 타 질병 예측 마커와 결합하여 유전자 검사 키트로 제작될 수 있으며, 반려견 품종 관리 및 질병 관리 기술로 유용하게 활용될 수 있을 것이다.
Infiltration is a popular technique used to produce valve seat rings and guides to create dense parts. In order to develop valve seat material with a good thermal conductivity and thermal expansion coefficient, Cu-infiltrated properties of sintered Fe-Co-M(M=Mo,Cr) alloy systems are studied. It is shown that the copper network that forms inside the steel alloy skeleton during infiltration enhances the thermal conductivity and thermal expansion coefficient of the steel alloy composite. The hard phase of the CoMoCr and the network precipitated FeCrC phase are distributed homogeneously as the infiltrated Cu phase increases. The increase in hardness of the alloy composite due to the increase of the Co, Ni, Cr, and Cu contents in Fe matrix by the infiltrated Cu amount increases. Using infiltration, the thermal conductivity and thermal expansion coefficient were increased to 29.5 W/mK and 15.9 um/moC, respectively, for tempered alloy composite.
This study examines paraelectric Bi1.5Zn1.0Nb1.5O7 (BZN), which has no hysteresis and high dielectric strength, for energy density capacitor applications. To increase the breakdown dielectric strength of the BZN film further, poly(vinylidene fluoride) BZN-PVDF composite film is fabricated by aerosol deposition. The volume ratio of each composition is calculated using dielectric constant of each composition, and we find that it was 12:88 vol% (BZN:PVDF). To modulate the structure and dielectric properties of the ferroelectric polymer PVDF, the composite film is heat-treated at 200 oC for 5 and 30 minutes following quenching. The amount of α-phase in the PVDF increases with an increasing annealing time, which in turn decreases the dielectric constant and dielectric loss. The breakdown dielectric strength of the BZN film increases by mixing PVDF. However, the breakdown field decreases with an increasing annealing time. The BZN-PVDF composite film has the energy density of 4.9 J/cm3, which is larger than that of the pure BZN film of 3.6 J/cm3.
The proton exchange membrane fuel cells(PEMFCs) have been noticed as the promising power sources. One of the important components in PEMFC is the proton exchange membranes(PEMs). Recently various materials for PEMs have been investigated for fuel cell applications. Sulfonated aromatic hydrocarbon-based multiblock copolymers have drawn much interest due to their well-defined phase separation between hydrophilic and hydrophobic blocks. In our group, multiblock copolymers based on highly sulfonated poly(fluorenyl ether sulfone)s were developed as highly conductive and stable polymer electrolyte membranes. We report herein the investigation of the influence of phase separation and properties by block length of the corresponding membranes.
In this study, structural stability of large diameter high density polyethylene (HDPE) pipe during installation was numerically investigated in order to investigate the effect of concrete collar dimension, water depth and tension (pulling force). From the numerical simulation results, the total stress of HDPE pipe with designed concrete collar was within 2.5%, so the total weight of concrete collar for sinking of HDPE is important rather than concrete collar dimension. Furthermore, the tension area for possible installation is decreased as the air filling rate is increased. Therefore, it is important to calculate the reasonable tension range before actual installation for safe installation of HDPE pipe.
In this study, we propose an innovative lateral force distribution building system between tall buildings by utilizing the difference of moment of inertia, as the alternative design for highly integrated city area. Considering a tri-axial symmetric conditions and boundary conditions for the three-dimensional building structure system, a two-dimensional model is composed. In the proposed indeterminate structural model, important design variables are determined for obtaining minimum horizontal deflections, reactions and bending moments at the ground level of the buildings. Regarding a case of the provided two spatial structures connected to 4 buildings, the optimum location of middle located spatial structure is 45% from the top of the building, which minimize the end moments at the bottom of the buildings. In the considered verification examples, reduced drifts at the top location of the building systems are validated against static wind pressure loads and static earthquake loads. The suggested hybrid building system will improve the safety and reliability of the system due to the added internal truss-dome structures in terms of more than 30% reduced drift and vibration through the development of convergence of tall buildings and spatial structures.
Recently, there are many problems of service qualities such as regular-rapid-safe -comfortable transport, that was traditionally advantages in urban railway transportations. These problems cause train delays that affects consecutive schedule, capacity, operation plans, and it is hard to prevent the propagation of delay and find the recovery solution. Because the urban transport demands is continuously increased and the railway service is also expanded, the railway operation company makes efforts to improve operation performance and efficiency for passengers. In this paper, we analyse the issues and problems existing in the major operation line of high-density urban railways, and suggest the development direction of intelligent operation technology to improve the urban railway service by minimizing the occurrence and propagation of delay. And the result of numerical case study is also presented.
For the purpose of obtaining basic information on the development of lead-free materials, a high density composites (a) W-Cu, (b) W-Sn (c)W-Cu-Sn and (d) W-Cu-Ni were fabricated by the P/M method. The particle size of used metal powders were under 325 mesh, inner size of compaction mould was mm, and compaction pressure was 400 MPa. A High density composite samples were sintered at a temperature between and for 1 hour under Ar atmosphere. The microstructure, phase transformation and physical properties of the sintered samples were investigated. As the results, the highest relative density of 95.86% (10.87 g/) was obtained particularly in the sintered W-Cu-Sn ternary system sample sintered at 450 for 1hr. And, Rockwell hardness (HRB) of 70.0 was obtained in this system.
Pure WC or WC with low Co concentration less than 0.5 wt.% is studied to fabricate high density WC/Co cemented carbide using vacuum sintering and post HIP process. Considering the high melting point of WC, it is difficult to consolidate it without the use of Co as binder. In this study, the effect of lower Co addition on the microstructure and mechanical properties evolution of WC/CO was investigated. By HIP process after vacuum sintering, hardness and density was sharply increased. The hardness values was using binderless WC.
In this study the nanostructured ceramics have been fabricated by the combined application of magnetic pulsed compaction (MPC) and subsequent spark plasma sintering (SPS), and their density and hardness properties were investigated. The prepared by the combined processes showed an increase by in density, approaching the value close to the true density, and an enhancement by in hardness, compared to those fabricated by MPC or static compaction method followed by sintering treatment.