This paper presents a framework for developing aftershock fragility curves for reinforced concrete bridges initially damaged by mainshocks. The presented aftershock fragility is a damage-dependent fragility function, which is conditioned on an initial damage state resulting from mainshocks. The presented framework can capture the cumulative damage of as-built bridges due to mainshock-aftershock sequences as well as the reduced vulnerability of bridges repaired with CFRP pier jackets. To achieve this goal, the numerical model of column jackets is firstly presented and then validated using existing experimental data available in literature. A four-span concrete boxgirder bridge is selected as a case study to examine the application of the presented framework. The aftershock fragility curves are derived using response data from back-to-back nonlinear dynamic analyses under mainshock-aftershock sequences. The aftershock fragility curves for as-built bridge columns are firstly compared with different levels of initial damage state, and then the post-repair effect of FRP pier jacket is examined through the comparison of aftershock fragility curves for as-built and repaired piers.
Damage potential has been investigated for a domestic metropolitan railway bridge subjected to 2016 Gyeongju earthquake which has been reported as the strongest earthquake in Korea. For this purpose, nonlinear static pushover analyses for the bridge piers have been carried out to evaluate ductility capacities. Then, the capacities have been compared with those suggested by Railway Design Standards of Korea. This comparison shows that all piers possess enough safety margins. Nonlinear dynamic time-history analysis has also been conducted to estimate both displacement and shear force demands for the bridge subjected to ground motions recorded at stations in near of Gyeongju. Maximum demands reveal that response under the ground motions remains essentially in elastic. In addition, for a further assessment of the bridge under the Gyeongju earthquake, fragility analyses have been performed using those ground motions. The fragility results indicate that the recorded earthquakes do not significantly affect the damage exceedance probability of the bridge piers.
현행의 내진설계의 성능목표는 인명피해를 최소화하기 위한 구조물의 붕괴방지에 있으며 기존구조물의 내진보강도 이를 만족하도록 수행되고 있다. 그러나, 최근의 해외 지진피해사례를 살펴보면 큰 지진에서도 이러한 내진성능목표는 비교적 잘 달성되었지만 엄청난 경제적 손실이 동반되어 새로운 문제점으로 제기되고 있다. 이러한 큰 경제적 손실을 줄이기 위해서는 현행 붕괴방지성능에서 벗어나 구조물의 손상을 제어할 수 있도록 손상확률에 기반하여 내진성능목표를 설정하는 새로운 내진설계개념이 필요하다. 본 연구에서는 다양한 구조적특성을 지닌 교량을 대상으로 하여 비선형지진해석을 수행하여 지진거동특성을 확인하고, 기준손상도에 대한 취약도곡선을 산정하였다. 이로부터 목표손상확률에 따른 교량구조물의 목표연성도의 특성을 분석하였다.
본 논문에서는 구조물의 전역적인 손상도 평가와 국부 구조 연결부의 손상 검색을 동시에 수행할 수 있는 하이브리드 구조 손상 모니터링 체계가 제시되었다. 하이브리드 손상 모니터링 체계는 진동기반 기법과 전기/역학적 임피던스 기법으로 구성되었다. 진동기반 기법은 구조물의 모드특징의 변화를 사용하여 구조물의 전역적 특성의 변화를 감지하고, 전기/역학적 임피던스 기법은 PZT 센서의 저항 변화를 사용하여 국부 구조 연결부의 손상 여부를 검출한다. 제안된 하이브리드 모니터링 체계를 검증하기 위해 구조 연결부의 볼트 풀림 상황을 손상 시나리오로 선택하였으며, 가속도 응답과 임피던스 응답 신호가 계측되었다. 실험 결과, 제안된 하이브리드 모니터링 체계를 통해 구조물의 전역적 손상 상태와 국부 구조 연결부의 손상을 정확하게 모니터링 할 수 있었다.
교량의 손상추정을 위한 구조계 규명기법은 신호취득시스템 및 정보처리기술의 발전과 함께 최근에 많은 연구개발이 이루어지고 있다. 신경망기법이나 유전자 알고리즘과 같은 소프트컴퓨팅 기법은 뛰어난 패턴인식성능 때문에 손상추정 문제에 활발히 활용되고 있다. 본 연구에서는 모드계수를 활용한 신경망기법기반 손상추정을 수행하였으며, 신경망을 훈련시키기 위한 훈련패턴을 생성하는 해석모델에서의 불확실성을 효과적으로 고려할 수 있는 방법을 제시하였다. 해석모델의 불확실성 대하여 민감하지 않은 입력자료인 손상 전 후의 모드형상의 차 또는 모드형상의 비를 신경망의 입력자료로 활용하였다. 단 순보와 다주형교량에 대한 수치예제를 통하여 본 연구에서 제시한 기법의 타당성 및 적용성을 검증하였다.
본 연구에서는 지진하중을 받는 교량구조물의 동적거동을 보다 실제적으로 예측하기 위하여 받침의 손상여부는 물론 다양한 영향요소를 고려할 수 있는 이상화된 다자유도 교량해석모형을 개발하였으며, 이를 바탕으로 받침의 손상이 교량구조물의 지진응답에 미치는 영향을 분석하였다. 받침의 손상은 마찰요소를 이용한 단순화된 모형으로 고려하였으며, 발생가능한 받침의 손상조건에 따른 영향을 분석하기 위하여 다양한 마찰계수의 적용에 따른 교량구조물의 응답분포특성을 구하였다. 모의분석 결과로부터 받침손상의 고려여부 및 적용된 마찰계수에 따라 최대응답의 크기 및 발생위치가 서로 다르게 평가되었으며, 특히 교량구조물에서 낙교의 발생가능성이 큰 위치에서의 최대상대거리는 받침의 손상여부에 따라 상당한 영을 받는 것으로 나타났다. 그러나 최대응답의 증가량은 크지 않은 것으로 분석되었다. 그러므로 다경간 단순형 교량구조물에 있어서 받침의 손상에 따른 낙교의 발생가능성을 감소시키기 위한 부가적인 받침보강은 필요시 선택적으로 적용될 수 있을 것으로 판단된다.
본 연구에서는 차량하중에 의한 상시진동기록을 이용한 교량의 손상추정기법을 연구하였다. 즉, 차량진행 중 측정된 신호로부터 구조물의 모드특성을 구하고, 이를 이용하여 손상위치 및 손상정도를 추정하는 알고리즘을 제안하였다. 제안기법의 검증을 위하여 차량하중을 재하할 수 있는 모형교량을 제작하여 손상실험을 수행하였다. 차량진행 중 교량의 수직가속도를 계측하였으며, 측정된 가속도시계열로부터 random decrement(RD) 기법을 사용하여 자유진동신호를 구한 후, 이로부터 구조물의 모드특성을 추정하였다. 추정된 모드특성을 기초로 신경망기법을 적용하여 손상위치 및 손상정도를 추정하였으며, 추정된 결과는 실제 손상과 비교적 잘 일치하였다.
본 논문에서는 동특성추정법 (system identification) 을 이용한 교량구조의 손상정도를 평가하는 방법이 제
시되었다. 손상된 구조물의 비선형 동적거동은 휩모우멘트와 곡률반경의 시간이력 관계로써 표시하였으며,
구조물의 성질을 나타내는 특성계수는 실측자료를 이용한 동특성추정법을 사용하여 추정하였다. 또한, 구조
물의 성질의 다양성과 응답의 불확실성을 고려하여 손상은 확률변수로 나타내었으며, 예제해석으로는 곡선교
의 손상도추정이 수행되었다.
Recently, there have been many studies to classify the image-based damage of bridge using the deep learning and to evaluate the condition. These attempts are one of the ways to overcome limitations of visual inspection through inspectors, and it is also aimed to reduce the cost of necessary maintenance budget by enabling accurate and rapid damage assessment of rapidly growing old facilities and difficult parts of visual inspection. However, it is possible to classify and quantitatively express simple damage (one damage classification such as cracks) with image information (big data) of bridges, but classification and quantification of complex damage can be done by using one deep learning is a limit. Therefore, this study presents considerations and a method to be used for damage detection on the image basis using deep learning.
There are more than 9,300 bridges on the highway, of which about 34%(3,150) are PSCI bridges. The safety of these bridges is directly influenced by the tensile strength of the internal tendons(strand) and the strength of the concrete compared to the reinforcing bars from the design viewpoint. Therefore, in this paper, for the maintenance plan considering the damage of the internal tendons, the internal tendon cutting and truck loading test was conducted and deflection and appearance status change was analyzed. As a result of the test, deflection increased and flexural cracks occurred on center of the girder. And longitudinal direction cracks followed tendon placement occurred on a bottom flange.
In this paper, real-time damage assessment technology was developed for detection the damage of bridges in real time and the performance of the developed technology was verified by vibration test. Real-time damage assessment technology was developed by combining statistical pattern recognition technology and simulation technology. In order to verify the developed technology, the earthquake response acquisition experiment was conducted according to the cable damage of the model cable-stayed bridge. As a result, it was confirmed that the developed real-time damage assessment technology can provide information on the location of damaged cable.
In order to establish preventive maintenance and to make a reasonable estimate of the required repair cost for bridges, the related history information of the existing bridge inspection and diagnosis was analyzed. It was analyzed that about 75% of the repair costs were required for the pavement, expansion joining, curb, and railings in the service area of bridges.
고속도로에서 콘크리트 포장의 알칼리-골재반응 발생 구간이 증가하고 있다. 알칼리-골재반응이 발생한 콘크리트 포장은 팽창하 면서 인접 교량에 교대 변위를 발생시켜 다수의 손상을 발생시키고 있다. 현장 조사 결과 콘크리트 포장의 팽창량은 온도 신축에 의한 팽창률을 상회하면서 교량에 치명적인 하중으로 작용하고 있어 손상 방지를 위한 선제적인 조치가 필요하다. 알칼리-골재 반응에 의한 팽창 정도는 알칼 리-골재반응의 상태, 포장의 길이 및 도로구조에 따라 달라짐을 알 수 있었다. 교량의 손상 방지를 위해선 콘크리트 포장의 팽창력을 이완시켜 주는 방안이 효과적이며 콘크리트 포장의 길이가 긴 구간은 아스팔트 치환공법이 유리할 것이다.
This paper aims to evaluate the safety of the cable supported bridges under the occurrence of damages on cable system. There are more than 50 cable supported bridges currently built in the Korean peninsula and efficient and systematic maintenance and management are in great demand. However, safety of the bridges cannot be under estimated and should be properly evaluated. In this paper, two bridges (one cable-stayed bridge and one suspension bridge) in South Korea were investigated their safety based on the damage scenario of cable system. FEM analysis for safety evaluation of the two bridges was conducted and the results were explained. The result could be used by operators and owners of bridges for the future maintenance and management.
All bridges are inevitably undergoing deterioration over time. Therefore, it is necessary to predict the maintenance control and to properly manage the maintenance control cost by deriving the appropriate repair and reinforcement timing. The deterioration of bridges appears to vary according to the years of use of bridges and the exposed environment. In this study, the correlation between the deterioration factor of the winter season and the damage rate of the bridge deck was derived from 1117 total bridge data collected through the GPR(Ground Penetration Radar) system.