검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 72

        1.
        2024.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To fabricate intermetallic nanoparticles with high oxygen reduction reaction activity, a high-temperature heat treatment of 700 to 1,000 °C is required. This heat treatment provides energy sufficient to induce an atomic rearrangement inside the alloy nanoparticles, increasing the mobility of particles, making them structurally unstable and causing a sintering phenomenon where they agglomerate together naturally. These problems cannot be avoided using a typical heat treatment process that only controls the gas atmosphere and temperature. In this study, as a strategy to overcome the limitations of the existing heat treatment process for the fabrication of intermetallic nanoparticles, we propose an interesting approach, to design a catalyst material structure for heat treatment rather than the process itself. In particular, we introduce a technology that first creates an intermetallic compound structure through a primary high-temperature heat treatment using random alloy particles coated with a carbon shell, and then establishes catalytic active sites by etching the carbon shell using a secondary heat treatment process. By using a carbon shell as a template, nanoparticles with an intermetallic structure can be kept very small while effectively controlling the catalytically active area, thereby creating an optimal alloy catalyst structure for fuel cells.
        4,000원
        7.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Esterification reaction between succinic acid and 1,4-butanediol was kinetically investigated in the presence of nontoxic organometallic compound catalyst(ESCAT-100E) at 150-190℃. The reaction rates measured by the amount of distilled water from the reaction vessel. The Esterification reaction was carried out under the first order conditions respect to the concentration of reactants, respectively. The overall reaction order was 2nd. The linear relationship was shown between apparent reaction rate constant and reciprocal absolute temperature. By the Arrhenius plot the activation energy have been calculated as 376.13 kJ/mol under nontoxic organometallic compound catalyst and also apparent reaction rate constant, k' was found to obey first kinetics with respect to the concentration of catalyst.
        4,000원
        9.
        2008.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of the present study is to investigate the increase in the functional characteristics of a substrate by the formation of a thin coating layer. Thin coating layers of have high potential because exhibits high hardness. Shock induced reaction synthesis is an attractive fabrication technique to synthesize uniform coating layer by controlling the shock wave. Ti and Si powders to form using shock induced reaction synthesis, were mixed using high-energy ball mill into small scale. The positive effect of this technique is highly functional coating layer on the substrate due to ultra fine substructure, which improves the bonding strength. These materials are in great demand as heat resisting, structural and corrosion resistant materials. Thin coating layer was successfully recovered and showed high Vickers' hardness (Hv=1183). Characterization studies on microstructure revealed a fairly uniform distribution of powders with good interfacial integrity between the powders and the substrate.
        4,000원
        10.
        2008.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fe-aluminides have the potential to replace many types of stainless steels that are currently used in structural applications. Once commercialized, it is expected that they will be twice as strong as stainless steels with higher corrosion resistance at high temperatures, while their average production cost will be approximately 10% of that of stainless steels. Self-propagating, high-temperature Synthesis (SHS) has been used to produce intermetallic and ceramic compounds from reactions between elemental constituents. The driving force for the SHS is the high thermodynamic stability during the formation of the intermetallic compound. Therefore, the advantages of the SHS method include a higher purity of the products, low energy requirements and the relative simplicity of the process. In this work, a Fe-aluminide intermetallic compound was formed from high-purity elemental Fe and Al foils via a SHS reaction in a hot press. The formation of iron aluminides at the interface between the Fe and Al foil was observed to be controlled by the temperature, pressure and heating rate. Particularly, the heating rate plays the most important role in the formation of the intermetallic compound during the SHS reaction. According to a DSC analysis, a SHS reaction appeared at two different temperatures below and above the metaling point of Al. It was also observed that the SHS reaction temperatures increased as the heating rate increased. A fully dense, well-bonded intermetallic composite sheet with a thickness of 700 μm was formed by a heat treatment at 665˚C for 15 hours after a SHS reaction of alternatively layered 10 Fe and 9 Al foils. The phases and microstructures of the intermetallic composite sheets were confirmed by EPMA and XRD analyses.
        4,000원
        11.
        2008.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microstructural evolution and the intermetallic compound (IMC) growth kinetics in an Au stud bump were studied via isothermal aging at 120, 150, and 180˚C for 300hrs. The AlAu4 phase was observed in an Al pad/Au stud interface, and its thickness was kept constant during the aging treatment. AuSn, AuSn2, and AuSn4 phases formed at interface between the Au stud and Sn. AuSn2, AuSn2/AuSn4, and AuSn phases dominantly grew as the aging time increased at 120˚C, 150˚C, and 180˚C, respectively, while (Au,Cu)6Sn5/Cu3Sn phases formed at Sn/Cu interface with a negligible growth rate. Kirkendall voids formed at AlAu4/Au, Au/Au-Sn IMC, and Cu3Sn/Cu interfaces and propagated continuously as the time increased. The apparent activation energy for the overall growth of the Au-Sn IMC was estimated to be 1.04 eV.
        4,000원
        13.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        [ ] alloys with Al, B or Nb were prepared by an advanced consolidation process that combined mechanical alloying with pulse discharge sintering (complex forming) to improve the mechanical properties. Their microstructure and mechanical properties were investigated. The alloys fabricated by complex forming method showed very fine microstructure when compared with the sample sintered from commercial powders. Alloys made from powders milled in Ar gas had fewer silica or alumina phases as compared to their counterparts sintered from powders milled in air. In densification of the sintered body, addition of B was more effective than Al or Nb. Both Victors hardness and tensile test indicated that the alloy fabricated by the complex forming method showed better properties than the sample sintered from commercial powders. The Al added alloy sintered from the powders milled in air had the superior mechanical properties due to the suppression of and formation of fine particles.
        4,000원
        18.
        2003.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        국내의 가동 중지된 우라늄 변환시설의 해체 시 우라늄 화합물로 오염되어 대량으로 발생될 금속폐기물의 재활용 또는 자체처분을 위한 제염기술로 전해제염 공정의 적용성을 평가하였다. 이를 위하여 우라늄 변환시설 내부설비의 주 구성 재료인 SUS-304 와 Inconel-600 금속시편을 대상으로 전해용해 실험을 수행하였다. SUS-304 와 Inconel-600 금속시편에 대한 전해용해 성능에 있어서 중성염 전해용액으로 SO가 가장 효과적이었으나, 우라늄변환시설의 가동 시 질산 매질과 주로 접촉했던 설비 표면의 이력과 시설 가동 중 발생한 우라늄 폐액의 성상을 고려하여 SO 전해용액 내에서의 SUS-304 시편에 대한 전해용해와 비교해서 약 30%, 그리고 Inconel-600 시편에 대해서는 거의 동등한 성능을 보인 NaNO 중성염 용액을 금속성폐기물의 전해제염 용액으로 선정하였다. 본 연구에서는 NaNO 중성염 전해용액에서 전류밀도, 전해시간 및 전해 용액의 농도가 SUS-304 및 Inconel-600 금속시편의 전해용해 성능에 미치는 영향을 조사하였다. 이 실험결과를 바탕으로 실제 우라늄 변환시설로부터 인출하여 , AUC 및 ADU 등의 우라늄 화합물로 오염된 시편에 대해 전류밀도 100mA/, IM NaNO 전해용액 내에서 전해 제염 실증시험을 수행하였으며, 오염물의 종류 및 오염준위의 대소와는 관계없이 모든 시편에 대하여 10분 이내의 짧은 시간 내에 자체처분 기준치 이하로 및 방사능 준위를 감소시킴으로써 본 중성염 전해제염이 매우 성공적임을 확인하였다.
        4,500원
        1 2 3 4