검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 24

        1.
        2014.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effects of printed circuit board electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) surface finishes on the electromigration reliability and shear strength of Sn-3.5Ag Pb-free solder bump were systematically investigated. In-situ annealing tests were performed in a scanning electron microscope chamber at 130, 150, and 170˚C in order to investigate the growth kinetics of intermetallic compound (IMC). Electromigration lifetime and failure modes were investigated at 150˚C and 1.5×105A/cm2, while ball shear tests and failure mode analysis were conducted under the high-speed conditions from 10 mm/s to 3000 mm/s. The activation energy of ENIG and OSP surface finishes during annealing were evaluated as 0.84 eV and 0.94 eV, respectively. The solder bumps with ENIG surface finish showed longer electromigration lifetime than OSP surface finish. Shear strengths between ENIG and OSP were similar, and the shear energies decreased with increasing shear speed. Failure analysis showed that electrical and mechanical reliabilities were very closely related to the interfacial IMC stabilities.
        4,000원
        2.
        2010.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        3-D IC integration enables the smallest form factor and highest performance due to the shortest and most plentiful interconnects between chips. Direct metal bonding has several advantages over the solder-based bonding, including lower electrical resistivity, better electromigration resistance and more reduced interconnect RC delay, while high process temperature is one of the major bottlenecks of metal direct bonding because it can negatively influence device reliability and manufacturing yield. We performed quantitative analyses of the interfacial properties of Al-Al bonds with varying process parameters, bonding temperature, bonding time, and bonding environment. A 4-point bending method was used to measure the interfacial adhesion energy. The quantitative interfacial adhesion energy measured by a 4-point bending test shows 1.33, 2.25, and 6.44 J/m2 for 400, 450, and 500˚C, respectively, in a N2 atmosphere. Increasing the bonding time from 1 to 4 hrs enhanced the interfacial fracture toughness while the effects of forming gas were negligible, which were correlated to the bonding interface analysis results. XPS depth analysis results on the delaminated interfaces showed that the relative area fraction of aluminum oxide to the pure aluminum phase near the bonding surfaces match well the variations of interfacial adhesion energies with bonding process conditions.
        4,000원
        3.
        2009.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Embedding of active devices in a printed circuit board has increasingly been adopted as a future electronic technology due to its promotion of high density, high speed and high performance. One responsible technology is to embedded active device into a dielectric substrate with a build-up process, for example a chipin-substrate (CiS) structure. In this study, desmear treatment was performed before Cu metallization on an FR-4 surface in order to improve interfacial adhesion between electroless-plated Cu and FR-4 substrate in Cu via structures in CiS systems. Surface analyses using atomic force microscopy and x-ray photoemission spectroscopy were systematically performed to understand the fundamental adhesion mechanism; results were correlated with peel strength measured by a 90o peel test. Interfacial bonding mechanism between electrolessplated Cu and FR-4 substrate seems to be dominated by a chemical bonding effect resulting from the selective activation of chemical bonding between carbon and oxygen through a rearrangement of C-C bonding rather than from a mechanical interlocking effect. In fact, desmear wet treatment could result in extensive degradation of FR-4 cohesive strength when compared to dry surface-treated Cu/FR-4 structures.
        4,000원
        5.
        2008.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of annealing treatment conditions on the interfacial adhesion energy between electrolessplated Ni film and polyimide substrate was evaluated using a 180˚ peel test. Measured peel strength values are 26.9±0.8, 22.4±0.8, 21.9±1.5, 23.1±1.3, 16.1±2.0 and 14.3±1.3g/mm for annealing treatment times during 0, 1, 3, 5, 10, and 20 hours, respectively, at 200˚C in ambient environment. XPS and AES analysis results on peeled surfaces clearly reveal that the peeling occurs cohesively inside polyimide. This implies a degradation of polyimide structure due to oxygen diffusion through interface between Ni and polyimide, which is also closely related to the decrease in the interfacial adhesion energy due to thermal treatment in ambient conditions.
        4,000원
        7.
        2008.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In a total hip arthroplasty, the artificial hip joint is composed of an acetabular cup and a femoral head. To minimize the wear of the joint, the bearing surface should be precisely spherical. There were concerns that the press-fitting of the acetabular cup to the pelvis may cause the deformation of the cup and accelerate the wear of the joint, but its in-vivo measurement was challenging. In this paper, 3 dimensional finite element(FE) models of a pelvis and acetabular cups of Metasul 50mm and Pinnacle 50-60mm cups were used to simulate the deformation of the acetabular cups. For Metasul cups, the change of inner radius with respect to the location and the maximum shrinkage of the inner radius were found. For the Pinnacle cups, maximum change of the outer diameter were found and compared with the literature. FE model showed that the maximum shrinkage of the inner radius of the Metasul cup was 23μm (1.0mm press-fit, Bone stiffness 17GPa case). The shrinkage occurred mainly on the anterior and posterior side of rim of the cup, and the amount was proportional to the press-fit amount. The diametric change of the Pinnacle cup was 0.16mm on average, which was in same range of the clinically reported value. In conclusion, under the normal condition the reduction of the inner radius of the Metasul cup was too small to cause the jamming or the excessive wear.
        4,000원
        8.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        우리나라 장미산업의 국제화에 대비하여 필리핀 코르딜레라 고냉지 지역에서 생산된 장미의 품질, 수량 및 우수 품종을 연구, 소득 분석을 요약하여 아래와 같이 산업화의 기초자료를 얻기 위해 본 실험을 수행하였다. 절화 내 질적 실험에서는 대비종에 비해 특히 'Jacaranda' 품종은 개화기간 46일, 13일정도의 꽃받침 휨 정도보다 짧은 것으로 나타내므로, 광질, 조사기간 및 온도 등이 영향을 제일 많은 영향을 받는 것으로 볼 수 있었다. 절화 시 'Vicki Brown'와 'Jacaranda' 품종은(개화기간 49일, 13일 꽃 받침 휨 정도 이내) 중, 단초 절화로 분류되는 다른 품종에 비해 단축되는 경향을 보았다. 'Jacaranda', 'Vcki Brown', 'Golden Times', 'Champagne', 'Osiana' 및 'Queen Elizabeth' 품종은 전정에서 46.7일에서 50.77일까지 조기 개화되었으나 'Tineke' 품종은 전정 41일 후에 꽃 받침 휨 정도가 0.5cm에 이르게 되어 개화형성이 늦어짐이 뚜렷하였다. 여기에서 상위 10품종 장미의 순수익은 'American Orange' 품종 77072, 'Yellow Island' 품종 39322, 'Frosty Pink' 품종 27130, 'Champagne' 품종 24516, 'Coral Pink' 품종 23992, 'Lara Pink' 품종 22961, 'Lara Orange' 품종 17856, 'Grand Gala' 품종 17645, 'Golden Times' 품종 20163 및 'Lady X' 품종 19452 등이다.
        4,000원
        9.
        2008.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        1.5 μm-thick copper films deposited on silicon wafers were successfully bonded at 415˚C/25 kN for 40 minutes in a thermo-compression bonding method that did not involve a pre-cleaning or pre-annealing process. The original copper bonding interface disappeared and showed a homogeneous microstructure with few voids at the original bonding interface. Quantitative interfacial adhesion energies were greater than 10.4 J/m2 as measured via a four-point bending test. Post-bonding annealing at a temperature that was less than 300˚C had only a slight effect on the bonding energy, whereas an oxygen environment significantly deteriorated the bonding energy over 400˚C. This was most likely due to the fast growth of brittle interfacial oxides. Therefore, the annealing environment and temperature conditions greatly affect the interfacial bonding energy and reliability in Cu-Cu bonded wafer stacks.
        4,000원
        10.
        2008.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microstructural evolution and the intermetallic compound (IMC) growth kinetics in an Au stud bump were studied via isothermal aging at 120, 150, and 180˚C for 300hrs. The AlAu4 phase was observed in an Al pad/Au stud interface, and its thickness was kept constant during the aging treatment. AuSn, AuSn2, and AuSn4 phases formed at interface between the Au stud and Sn. AuSn2, AuSn2/AuSn4, and AuSn phases dominantly grew as the aging time increased at 120˚C, 150˚C, and 180˚C, respectively, while (Au,Cu)6Sn5/Cu3Sn phases formed at Sn/Cu interface with a negligible growth rate. Kirkendall voids formed at AlAu4/Au, Au/Au-Sn IMC, and Cu3Sn/Cu interfaces and propagated continuously as the time increased. The apparent activation energy for the overall growth of the Au-Sn IMC was estimated to be 1.04 eV.
        4,000원
        18.
        1999.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cu/Cr/polyimide 계에서 금속박막 두께와 폴리이미드 표면의 플라즈마 전처리 조건에 따른 필 테스트 결과로부터 Park와 Yu의 X-선 측정에 의한 방법과 Moidu등의 이론적 방법을 통애 Cr/polyimide 계면균열의 계면파괴에너지를 구했다. 두 방법으로 구한 박막의 소성일과 계면파괴어네지는 대부분의 경우에 대해 서로 잘 일치하였으며, 이와 같은 실험적 방법과 이론적 방법 모두 계면파괴에너지의 측정에 유용함을 알 수 있었다. 계면파괴에너지는 박막 두께에 거의 무관하였으며, 0.03, 0.036 그리고 0.05 W/cm2의 rf플라즈마 밀도에 대해 각각 46.8±17.8, 170.3±42.9 그리고 253.9±44.4 J/m2의 계면파괴에너지를 얻었다.
        4,000원
        19.
        1995.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        원거리 플라즈마 화학증착법을 이용하여 저온에서 이산화규소박막을 제조하였다. 본 연구 에서는 공정변수인 기판의 온도, 반응기체의 조성 및 분압과 플라즈마 전력에 따른 산화막의 재료적인 물성을 평가하였다. XPS결과에서 산화막은 양론비(O/Si=2)보다 약간 적어 실리콘이 많이 함유된 막으로 나타났다. 이 경우 굴절율과 ESR분석에 의해 미결합된 실리콘의 양이 증가함을 알 수 있었다. SIMS분석에 의해 미량의 질소성분이 계면에 존재하는 것과 실리콘 미결함을 관찰하였다. FT-IR로부터 막내 수소량을 정량화하였으며 결합각 분포는 200˚C이상에서 열산화막과 비슷한 값을 얻었다. 하지만 열산화막에 비해 높은 식각율을 보여 계면 스트레스에 의해 막내의 결합력이 약해진 것으로 생각된다.
        4,000원
        20.
        1982.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        4,000원
        1 2