검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to improve the accuracy of road pavement design by comparing and analyzing various statistical and machine-learning techniques for predicting asphalt layer thickness, focusing on regional roads in Pakistan. The explanatory variables selected for this study included the annual average daily traffic (AADT), subbase thickness, and subgrade California bearing ratio (CBR) values from six cities in Pakistan. The statistical prediction models used were multiple linear regression (MLR), support vector regression (SVR), random forest, and XGBoost. The performance of each model was evaluated using the mean absolute percentage error (MAPE) and root-mean-square error (RMSE). The analysis results indicated that the AADT was the most influential variable affecting the asphalt layer thickness. Among the models, the MLR demonstrated the best predictive performance. While XGBoost had a relatively strong performance among the machine-learning techniques, the traditional statistical model, MLR, still outperformed it in certain regions. This study emphasized the need for customized pavement designs that reflect the traffic and environmental conditions specific to regional roads in Pakistan. This finding suggests that future research should incorporate additional variables and data for a more in-depth analysis.
        4,000원
        2.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 15차 bézier 곡선을 사용하여 기존의 연구보다 더 유연한 빔 형상을 설계하고, 더 넓은 설계 공간에서 최적 설계를 수 행하여 최적의 열전도도를 갖는 빔 형상을 설계한다. 설계 공간이 넓어지면 그 만큼 계산양이 증가하게 되는데, 고차원 변수 공간에서 효율적으로 작동하는 인공신경망을 사용하여 최적 설계를 가속화하여 계산 한계를 극복하였다. 더 나아가 최적의 탄성계수를 갖는 빔의 형상과 비교하였으며 열전도와 탄성학 사이의 수학적 유사성을 이용하여 빔 형상을 설명한다. 본 연구에서는 인공지능을 활용 한 형상 최적설계를 통해 기존의 한계를 뛰어넘는 격자구조의 빔 형상을 제안한다. 먼저, SC(Simple Cubic), BC(Body Centered Cubic) 격자 구조 빔 형상을 bézier 곡선으로 모델링하고 bézier 곡선의 제어점 좌표를 무작위로 설정하여 학습데이터를 확보하였다. NN(Neural Network) 및 GA(Genetic Algorithm)를 통해 우수한 유효 열전도도를 가진 빔 형상을 생성하여 최적의 빔 형상을 설계하였 다. 본 연구를 통해 추후 다양한 열 조건에서 격자구조의 적절한 구조적 해답을 제시할 수 있을 것으로 기대된다.
        4,000원
        3.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, machine learning models were applied to predict the seismic response of steel frame structures. Both geometric and material nonlinearities were considered in the structural analysis, and nonlinear inelastic dynamic analysis was performed. The ground acceleration response of the El Centro earthquake was applied to obtain the displacement of the top floor, which was used as the dataset for the machine learning methods. Learning was performed using two methods: Decision Tree and Random Forest, and their efficiency was demonstrated through application to 2-story and 6-story 3-D steel frame structure examples.
        4,000원
        5.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        There has been increasing interest in UHPC (Ultra-High Performance Concrete) materials in recent years. Owing to the superior mechanical properties and durability, the UHPC has been widely used for the design of various types of structures. In this paper, machine learning based compressive strength prediction methods of the UHPC are proposed. Various regression-based machine learning models were built to train dataset. For train and validation, 110 data samples collected from the literatures were used. Because the proportion between the compressive strength and its composition is a highly nonlinear, more advanced regression models are demanded to obtain better results. The complex relationship between mixture proportion and concrete compressive strength can be predicted by using the selected regression method.
        4,200원
        6.
        2021.04 KCI 등재 서비스 종료(열람 제한)
        학교소속감이 중도탈락을 막을 수 있는 중요한 변수임에도 불구하고 특히 고등학교 학생에 대한 학교소속감 연구는 그 수가 많지 않다. 아직 충분한 연구가 이루어지지 않은 분야에서 기계학습 기법을 활용하는 탐색적 연구가 학문적 기여를 할 수 있다. 본 연구의 주요 목적은 일반고 및 특성화고 학생들의 학교소속감을 예측하는 중요한 변수를 파악하는 것이다. 이를 위하여 부산교육종단 연구 2016 4차년도 데이터의 일반고와 특성화고 학생, 교사, 교장, 학교 변수를 모두 활용하였다. 구체적으로 75개 일반고 1,775명의 824개 변수 자료와 36개 특성화고 739명의 854개 변수 자료를 기계학습 기법으로 분석한 결과, 일반고와 특성화고에서 각각 20개와 21개의 학생, 교사, 학교 관련 변수가 선택되었다. 학교소속감을 개인의 심리적 차원에 초점을 맞추어 분석한 선행연구와 달리, 본 연구는 교사, 교장, 학교 변수까지 모두 모형에 투입함으로써 학교 현장에서의 변화를 꾀하였다. 기계학습 기법 중 벌점회귀모형으로 분류되는 glmmLasso를 활용하여 변수 선택 시 자료의 위계적 구조를 반영한 점 또한 연구 의의라 하겠다. 특히 특성화고 자료는 사례 수보다 변수 수가 더 많은 고차원 자료였으므로 기계학습 기법을 활용하는 것이 필수적이었다. 연구 결과를 토대로 고등학생의 학교소속감을 향상시키기 위하여 필요한 정책적 제언을 제시하고, 후속 연구주제 또한 논하였다.
        7.
        2020.12 KCI 등재 서비스 종료(열람 제한)
        In meteorological data, various studies are being conducted to improve the prediction performance of rainfall with irregular patterns, unlike temperature and solar radiation with certain patterns. Especially in the case of the short-term forecast model for Dong-Nae Forecasts provided by the Korea Meteorological Administration (KMA), forecast data are provided at 6-hour intervals, and there is a limit to analyzing the impact of disasters. In this study, Hydrological Quantitative Precipitation Forecast (HQPF) information was generated by applying the machine learning method to Local ENsemble prediction system (LENS), Radar-AWS Rainrates (RAR), AWS and ASOS observation data and Dong-Nae Forecast provided by the KMA. Through the preprocessing process, the temporal and spatial resolutions of all the data were converted to the same resolution, and the predictor of machine learning was derived through the factor analysis of the predictor. Considering the processing speed and expandability, the XGBoost method of machine learning was applied, and the Probability Matching (PM) method was applied to improve the prediction accuracy of heavy rainfall. As a result of evaluating the HQPF performance produced for 14 heavy rainfall events that occurred in 2020, it was found that the predicted performance of HQPF was improved quantitatively and qualitatively.
        8.
        2019.04 서비스 종료(열람 제한)
        The widespread sensors in a structural monitoring system provide vital support to its operation. Data is obtainedf rom sensors in a structural health monitoring system for integrity assessment of the structure, and false alarm will be frequently triggered if a faulty sensor is detected. In this study, a proposed method based on machine learning algorithm and Gaussian distribution is present to identify sensor fault.
        9.
        2017.04 KCI 등재 서비스 종료(열람 제한)
        Solar radiation forecasts are important for predicting the amount of ice on road and the potential solar energy. In an attempt to improve solar radiation predictability in Jeju, we conducted machine learning with various data mining techniques such as tree models, conditional inference tree, random forest, support vector machines and logistic regression. To validate machine learning models, the results from the simulation was compared with the solar radiation data observed over Jeju observation site. According to the model assesment, it can be seen that the solar radiation prediction using random forest is the most effective method. The error rate proposed by random forest data mining is 17%.
        10.
        2006.12 KCI 등재 서비스 종료(열람 제한)
        본 논문은 기계학습 기법을 이용한 게임 캐릭터를 제어하는 엔진을 설계하고 구현하는 것을 제안한다. 제안된 엔진은 실제 게임에서 상황 데이터를 추출하여 지식 데이터로 사용하므로 지능 캐릭터의 행동 패턴을 게이머들이 쉽게 인식하지 못하는 장점이 있다. 이를 위하여 상황 데이터를 추출하여 학습하는 모듈과 임의의 상황 데이터에 대하여 최적의 상황 제어를 판단하는 시험 모듈을 개발하는 것을 제안하였다. 구현된 엔진은 FEAR에 이식되고 Quake2 게임에 적용되었다. 또한 개발된 엔진의 올바른 동작과 효율성을 위하여 다양한 실험을 하였다. 실험으로부터 개발된 엔진이 올바르게 동작할 뿐만 아니라 제한된 시간 내에 효율적으로 동작함을 알 수 있었다.