검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2022.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To improve light absorption ability in the visible light region and the efficiency of the charge transfer reaction, Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst were synthesized. The reduced TiO2 nanotube photocatalyst was fabricated by anodic oxidation of Ti plate, followed by an electrochemical reduction process using applied cathodic potential. For TiO2 photocatalyst electrochemically reduced using an applied voltage of -1.3 V for 10 min, 38% of Ti4+ ions on TiO2 surface were converted to Ti3+ ion. The formation of Ti3+ species leads to the decrease in the band gap energy, resulting in an increase in the light absorption ability in the visible range. To obtain better photocatalytic efficiency, Pd nanoparticles were decorated through photoreduction process on the surface of reduced TiO2 nanotube photocatalyst (r10-TNT). The Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst exhibited enhanced photocurrent response, and high efficiency and rate constant for aniline blue degradation; these were ascribed to the synergistic effect of the new electronic state of the TiO2 band gap energy induced by formation of Ti3+ species on TiO2, and by improvement of the charge transfer reaction.
        4,000원
        2.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A TiO2/CNT nanohybrid photocatalyst is synthesized via sol-gel route, with titanium (IV) isopropoxide and multi-walled carbon nanotubes (MWCNTs) as the starting materials. The microstructures and phase constitution of the nanohybrid TiO2/CNT (0.005wt%) samples after calcination at 450oC, 550oC and 650oC in air are compared with those of pure TiO2 using field-emission scanning electron microscopy and X-ray diffraction, respectively. In addition, the photocatalytic activity of the nanohybrid is compared with that of pure TiO2 with regard to the degradation of methyl orange under visible light irradiation. The TiO2/CNT composite exhibits a fast grain growth and phase transformation during calcination. The nanocomposite shows enhanced photocatalytic activity under visible light irradiation in comparison to pure TiO2 owing to not only better adsorption capability of CNT but also effective electron transfer between TiO2 and CNTs. However, the high calcination temperature of 650oC, regardless of addition of CNT, causes a decrease in photocatalytic activity because of grain growth and phase transformation to rutile. These results such as fast phase transformation to rutile and effective electron transfer are related to carbon doping into TiO2.
        4,000원
        3.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We demonstrate the electrochromic properties of TiO2 nanotubes prepared by an anodization process and investigate the effects of heat treatment and viologen incorporation on them. The morphology and crystal structure of anodized TiO2 nanotubes are investigated by scanning electron microscopy and X-ray diffraction. As-formed TiO2 nanotubes have straight tubular layers with an amorphous structure. As the annealing temperature increases, the anodized TiO2 nanotubes are converted to the anatase and rutile phases with some cracks on the tube surface and irregular morphology. Electrochemical results reveal that amorphous TiO2 nanotubes annealed at 150°C have the largest oxidation/ reduction current, which leads to the best electrochromic performance during the coloring/bleaching process. Viologenanchored TiO2 nanotubes show superior electrochromic properties compared to pristine TiO2 nanotubes, which indicates that the incorporation of a viologen can be an effective way to enhance the electrochromic properties of TiO2 nanotubes.
        4,000원
        4.
        2013.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Electrochemical surface treatment is commonly used to form a thin, rough, and porous oxidation layer on the surface of titanium. The purpose of this study was to investigate the formation of nanotubular titanium oxide arrays during short anodization processing. The specimen used in this study was 99.9% pure cp-Ti (ASTM Grade II) in the form of a disc with diameter of 15 mm and a thickness of 1 mm. A DC power supplier was used with the anodizing apparatus, and the titanium specimen and the platinum plate (3mm×4mm×0.1mm) were connected to an anode and cathode, respectively. The progressive formation of TiO2 nanotubes was observed with FE-SEM (Field Emission Scanning Electron Microscopy). Highly ordered TiO2 nanotubes were formed at a potential of 20 V in a solution of 1M H3PO4 + 1.5 wt.% HF for 10 minutes, corresponding with steady state processing. The diameters and the closed ends of TiO2 nanotubes measured at a value of 50 cumulative percent were 100 nm and 120 nm, respectively. The TiO2 nanotubes had lengths of 500 nm. As the anodization processing reached 10 minutes, the frequency distribution for the diameters and the closed ends of the TiO2 nanotubes was gradually reduced. Short anodization processing for TiO2 nanotubes of within 10 minutes was established.
        4,000원
        5.
        2011.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, nanotubes have considerably researched because of their novel application about photocatalysis, dye-sensitized solar cells (DSSCs), lithium ion battery, etc. In this work, self-standing nanotube arrays were fabricated by anodic oxidation method using pure Ti foil as a working electrode in ethylene glycole with 0.3M + . Growth behavior of nanotube arrays was compared according to temperature, voltage and time. The morphology, structure and crystalline of anodized nanotube arrays were observed by FE-SEM (field emission scanning electron microscope) and XRD (X-ray diffraction).
        4,000원
        6.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Self-standing TiO2 nanotube arrays were fabricated by potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as electrolytes with small addition of NH4F and H2O. The influences of anodization temperature and time on the morphology and formation of TiO2 nanotube arrays were investigated. The fabricated TiO2 nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of TiO2 nanotube show a similar value, whereas the thickness show a different trend with reaction temperature. The thickness of TiO2 nanotube arrays anodized at 20℃ and 30℃ was time-dependent, but on the other hand its at 10℃ are independent of anodization time. The conversion efficiency is low, which is due to a morphology breaking of the TiO2 nanotube arrays in manufacturing process of photoelectrode.
        4,000원
        7.
        2008.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        [ ] nanotubes for photocatalytic application have been synthesized by hydrothermal method. nanotubes are formed by washing process after reaction in alkalic solution. Nanotubes with different morphology have been fabricated by changing NaOH concentration, temperature and time. nanoparticles were treated inside NaOH aqueous solution in a Teflon vessel at for 20 h, after which they were washed with HCl aqueous solution and deionized water. Nanotube with the most perfect morphology was formed from 0.1 N HCl washing treatment. nanotube was also obtained when the precursor was washed with other washing solutions such as , NaCl, , and . Therefore, it was suggested that ion combined inside the precursor compound slowly comes out from the structure, leaving nanosheet morphology of compounds, which in turn become the nanotube in the presence of hydroxyl ion. To stabilize the sheet morphology, the different type of washing treatment solution might be considered such as amine class compounds.
        4,200원