검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 41

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The threat of North Korea's long-range firepower is recognized as a typical asymmetric threat, and South Korea is prioritizing the development of a Korean-style missile defense system to defend against it. To address this, previous research modeled North Korean long-range artillery attacks as a Markov Decision Process (MDP) and used Approximate Dynamic Programming as an algorithm for missile defense, but due to its limitations, there is an intention to apply deep reinforcement learning techniques that incorporate deep learning. In this paper, we aim to develop a missile defense system algorithm by applying a modified DQN with multi-agent-based deep reinforcement learning techniques. Through this, we have researched to ensure an efficient missile defense system can be implemented considering the style of attacks in recent wars, such as how effectively it can respond to enemy missile attacks, and have proven that the results learned through deep reinforcement learning show superior outcomes.
        4,000원
        2.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        일반적으로 적합직교분해(proper orthogonal decomposition, POD) 기반의 침습적(intrusive) 차수축소모델(reduced order model, ROM)을 활용하면 구조 시스템의 전체 자유도를 크게 줄이고 외연적 시간 적분법에서 해의 안정성을 만족하는 임계 시간 간격을 증가 시킬 수 있다. 따라서 본 연구에서는 POD-ROM을 활용하여 Voronoi-cell 격자 요소로 이산화된 구조 시스템의 축소와 이에 따른 외연 적 시간 적분법의 임계 시간 간격 및 해석 정확도 변화를 살펴보았다. 또한 지진하중과 같은 불규칙한 하중 이력을 받는 구조물 응답 해석에 POD-ROM을 적용하였다. 해석 결과 ROM을 통해 해의 정확도를 충분히 확보하면서 연산 시간을 크게 단축할 수 있음을 확인 하였다. 또한 POD-ROM과 VCLM의 연계 방안의 적절성을 확인하였다. 향후 해당 연구는 고정밀 대용량 동적 구조해석의 실용성을 높이고, 설계 변수에 따른 구조물 동적 거동의 실시간 예측을 위한 기반 연구로 활용될 수 있다.
        4,000원
        4.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the physical model and governing equations of a shallow arch with a moving boundary were studied. A model with a moving boundary can be easily found in a long span retractable roof, and it corresponds to a problem of a non-cylindrical domain in which the boundary moves with time. In particular, a motion equation of a shallow arch having a moving boundary is expressed in the form of an integral-differential equation. This is expressed by the time-varying integration interval of the integral coefficient term in the arch equation with an un-movable boundary. Also, the change in internal force due to the moving boundary is also considered. Therefore, in this study, the governing equation was derived by transforming the equation of the non-cylindrical domain into the cylindrical domain to solve this problem. A governing equation for vertical vibration was derived from the transformed equation, where a sinusoidal function was used as the orthonormal basis. Terms that consider the effect of the moving boundary over time in the original equation were added in the equation of the transformed cylindrical problem. In addition, a solution was obtained using a numerical analysis technique in a symmetric mode arch system, and the result effectively reflected the effect of the moving boundary.
        4,000원
        5.
        2021.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        KAERI has planned to carry out a series of dynamic tests using a shaking table and time-history analyses for a channel-type concrete shear wall to investigate its seismic performance because of the recently frequent occurrence of earthquakes in the south-eastern parts of Korea. The overall size of a test specimen is ×× 2500 mm×3500 mm×4500 mm, and it consists of three stories having slabs and walls with thicknesses of 140 mm and 150 mm, respectively. The system identification, FE model updating, and time-history analysis results for a test shear wall are presented herein. By applying the advanced system identification, so-called pLSCF, the improved modal parameters are extracted in the lower modes. Using three FE in-house packages, such as FEMtools, Ruaumoko, and VecTor4, the eigenanalyses are made for an initial FE model, resulting in consistency in eigenvalues. However, they exhibit relatively stiffer behavior, as much as 30 to 50% compared with those extracted from the test in the 1st and 2nd modes. The FE model updating is carried out to consider the 6-dofs spring stiffnesses at the wall base as major parameters by adopting a Bayesian type automatic updating algorithm to minimize the residuals in modal parameters. The updating results indicate that the highest sensitivity is apparent in the vertical translational springs at few locations ranging from 300 to 500% in variation. However, their changes seem to have no physical meaning because of the numerical values. Finally, using the updated FE model, the time-history responses are predicted by Ruaumoko at each floor where accelerometers are located. The accelerograms between test and analysis show an acceptable match in terms of maximum and minimum values. However, the magnitudes and patterns of floor response spectra seem somewhat different because of the slightly different input accelerograms and damping ratios involved.
        4,000원
        7.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the dynamic snapping of the 3-free-nodes spatial truss model was studied. A governing equation was derived considering geometric nonlinearity, and a model with various conditions was analyzed using the fourth order Runge-Kutta method. The dynamic buckling phenomenon was observed in consideration of sensitive changes to the force mode and the initial condition. In addition, the critical load level was analyzed. According to the results of the study, the level of critical buckling load elevated when the shape parameter was high. Parallelly, the same result was caused by the damping term. The sensitive asymmetrical changes showed complex orbits in the phase space, and the critical load level was also becoming lowly. In addition, as the value of damping constant was high, the level of critical load also increases. In particular, the larger the damping constant, the faster it converges to the equilibrium point, and the occurrence of snapping was suppressed.
        4,000원
        8.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 폭발하중을 받는 철근콘크리트 슬래브의 비선형 해석을 위한 개선된 수치 모델을 제안한다. 제안된 모델은 2축 응력 상태를 반영한 등가 강도에 의해 정의된 응력-변형률 관계를 사용하여 응력 상태를 직접 결정하는 변형률 속도 의존 이등방성 구성 모델을 다룬다. 또한, 균열 발생 후 콘크리트와 철근 사이의 부착 슬립이 점차 확대되어 소성힌지 영역으로 집중된다. 2축 응력 상태에서 콘크리트의 균열 방향은 주응력 방향에 따라 달라지므로 이를 고려한 부착 슬립 모델을 해석에 도입하였다. 해석 모델의 검증을 위해 수치해석과 실험결과의 상관관계 연구(correlation studies)가 수행되었다. 해석 결과는 재료모델의 2축 거동과 부착 슬립의 영향을 고려하는 것이 해석결과의 정확성 향상에 중요함을 보여주며 제안된 해석 모델이 철근콘크리트 슬래브 부재의 폭발해석에 효과적으로 사용될 수 있음을 확인하였다.
        4,000원
        10.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This paper develops a new stochastic approach to analyze the pavement-vehicle interaction model with a certain roughness and elasticity for the pavement foundation, thereby accommodating the deflection of the pavement, and to identify the road subsidence zone represented with a sudden changes in the elasticity of the foundation. METHODS: In the proposed model, a quarter-car model was combined with a filtered white noise model of road roughness and a two-layer foundation (Euler-Bernoulli beam for the top surface and Winkler foundation to represent the sub-structure soil). An augmented state-space model for the subsystems was formulated. Then, because the input is White noise and the system is represented as a single system, the Lyapunov equation governing the covariance of the system’s response was solved to obtain a structurally weak zone index (WZI). RESULTS: The results showed that the WZI from the pavement-vehicle interaction model is sensitive enough to identify road subsidence. In particular, the WZI rapidly changed with a small change in foundation elasticity, indicating that the model has the potential to detect road subsidence in the early stage. CONCLUSIONS: Beacause of the simplicity of the calculation, the proposed approach has potential applications in managing road conditions while a vehicle travels along the road and detecting road subsidence using a device with an on-board computational capability, such as a smart phone.
        4,000원
        12.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        등기하 해석법을 이용한 고유치 해석은 유한요소를 이용한 결과보다 고차 모드에서 더 정확한 결과를 주는 것으로 알려져 있다. 이는 유한요소법이 차수에 상관없이 요소 간에 C0연속성을 보이는 것과 다르게 등기하 해석법은 p차 요소에 대해서 Cp-1의 연속성을 보장하기 때문이다. 본 논문에서는 이러한 장점을 이용하여 등기하 해석법을 이용하여 모드 기반의 축소 모델을 구성하고 동적 거동 해석을 수행하였다. 축소 모델 구성을 위해 Craig-Bampton(CB) 기법을 적용하였다. 수치 예제를 통해 간단한 봉 요소에 대해 등기하 해석법과 유한요소 해석법을 적용하여 요소의 차수에 따른 고유치 해석 결과를 비교 분석하였다. 등기하 해석법에 중첩 노트를 허용하여 요소 간 연속성을 조절하고, 요소 간 연속성이 줄어듦에 따라 고차 모드에서의 수치 오차가 커짐을 확인하였다. 동적 거동 해석을 위한 축소 모델에 높은 차수의 외력이 주어지는 경우 요소간 연속 성이 높은 등기하해석법을 사용하면, 해의 정확도를 높일 수 있다.
        4,000원
        13.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구는 운항자가 항해 중 위험을 느끼는 고정 및 이동 물표에 대한 해상교통위험성평가에 대한 것이다. 이를 위해 선박 길이와 속력, 선박조종성능이 고려된 동적선박영역을 기초로 한 충돌위험평가식을 구하였다. 특히, 동적선박영역과 충돌위험평가식을 하이브리드 결합하여 자선의 크기, 속력 등의 영향을 정량적으로 지표화한 항해위험성평가모델을 검토 및 개선하고자 한 것이다. 기존 항해위험성평가 모델에 적용이 부족한 속장비(speed length ratio) 즉, 선박의 길이와 속력에 대한 비가 고려된 새로운 형태의 해상교통위험성평가 모델을 제안하고자 한다. 그 결과 무차원 속력 즉, 속장비가 클수록 CJ 값이 크며, CJ 값은 속장비에 의해 잘 표현되고 있다. 또한, 속장비가 크면 속장비가 작은 경우보다, 보다 먼 거리에서부터 [주의], [경계], [위험] 또는 [매우위험]상태에 도달한다. 이 연구의 결과는 위험항로 회피 또는 최적항로 구축, 방파제폭이나 교량경간 등을 포함한 항로나 항만개발, 연안항해용 안전해도 개발 및 향후 자율운항선박과 같은 스마트선박의 운항 중 충돌방지와 최적항로 선정에 자료로 사용될 수 있을 것이다.
        4,000원
        14.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In development of high speed Rigid conductor line(R-bar) over 250km/h, it is important to develop the method to anticipate the mechanical stability of the R-bar and of the transition structure which connects the flexible Overhead Contact Line. To do this, firstly, the FE(Finite Element) model for a transition structure was established and the initial deformed configurations due to gravitational force is obtained by a static analysis and the pantograph was modeled by a simplified mass-spring-damper system and the contact behavior between conductor and pantograph was defined by the penality method. Secondly, FE analysis results were reviewed with the test results of contact force between conductor and pantograph at the low speed of train. Finally, using the established analysis method, the evolution of contact forces was performed for a newly designed high speed R-bar and for its transition structure.
        4,000원
        15.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This paper presents a comparison study between dynamic and static analyses of falling weight deflectometer (FWD) testing, which is a test used for evaluating layered material stiffness. METHODS: In this study, a forward model, based on nonlinear subgrade models, was developed via finite element analysis using ABAQUS. The subgrade material coefficients from granular and fine-grained soils were used to represent strong and weak subgrade stiffnesses, respectively. Furthermore, the nonlinearity in the analysis of multi-load FWD deflection measured from intact PCC slab was investigated using the deflection data obtained in this study. This pavement has a 14-inch-thick PCC slab over finegrained soil. RESULTS: From case studies related to the nonlinearity of FWD analysis measured from intact PCC slab, a nonlinear subgrade modelbased comparison study between the static and dynamic analyses of nondestructive FWD tests was shown to be effectively performed; this was achieved by investigating the primary difference in pavement responses between the static and dynamic analyses as based on the nonlinearity of soil model as well as the multi-load FWD deflection. CONCLUSIONS : In conclusion, a comparison between dynamic and static FEM analyses was conducted, as based on the FEM analysis performed on various pavement structures, in order to investigate the significance of the differences in pavement responses between the static and dynamic analyses.
        4,000원
        16.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        상태 기반 페리다이나믹 모델은 일반적인 재료 구성 모델을 구현할 수 있고 비국부 영역 내에서 연결된 모든 결합의 변형을 통해 각 절점의 재료 응답이 결정되기 때문에 체적 및 전단 변형을 모두 표현할 수 있다. 따라서 상태 기반 모델은 복잡한 동적 취성 파괴 현상(분기균열, 2차 균열, 계단균열, 균열 유착 등)을 해석하는데 유용하다. 본 논문에서는 평면응력 탄성체에 대해 2차원 상태 기반 페리다이나믹 모델을 적용하고 에너지해방율과 페리다이나믹 에너지 포텐셜로부터 손상 모델을 구성하였다. 페리다이나믹 파괴 해석 모델을 통해 취성 유리 재료에 대해 균열 면에 평행한 압축 응력파가 균열 분기 패턴에 미치는 영향에 대해 조사하였다. 실험을 통해 관찰된 동적 균열 진전 및 분기 패턴에 대한 주요 특성들이 페리다이나믹 해석을 통해 확인되었다. 또한 강한 인장 하중 하의 계단균열과 이차균열 등이 상태 기반 페리다이나믹 시뮬레이션을 통해 잘 모사가 되는 것을 확인할 수 있었다.
        4,000원
        17.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the embedded depth of guardrail posts through 3-D soil material model and carried out evaluation of the dynamic performance of guard rail. In order to calculate for embedded depth of sloping ground, displacement of guardrail posts is analyzed according to the embedded depth of experiment variables. Through the static test of guardrail posts, the maximum deflection was found to decrease the interval. By performing the dynamic test using the Bogie Car, that is confirmed the elastic modulus of the soil occuring the maximum deflection. Guardrail posts is considered to need for further reinforcement in the larger slope than the plains. This study researched about maximum displacement and deviation velocity through dynamic performance of guardrail system and conducted analysis about protection performance evaluation of passenger.
        4,000원
        18.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This paper evaluates, using LS/DYNA-3D software, the vehicle impact performance of flexible barriers made of steel WBeam supported by four different types of post configurations. These types include circular post, H-shape post, C-shape post, and square post. METHODS : The post-soil interaction has been investigated according to different impact angles. For this purpose, energy absorption, maximum displacements of post and rail, and occupant risk index of THIV have been compared each other. The three dimensional soil material model, instead of the conventional spring model based on Winkler and p-y curve, has been used to increase the correctness of computational model. RESULTS: It is noted the crash energy absorption has been increased with respect to the increase of impact angle. CONCLUSIONS : In particular, a post with open section(H-shape, C-shape) shows the greater crash energy absorption capability as compared with a post with closed section under the same level of impact conditions.
        4,000원
        19.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : To solve problems in current compaction control DCPT(Dynamic Cone Penetrometer Test), highly correlated with various testing methods, simple, and economic is being applied. However, it、s hard to utilize DCPT results due to the few numerical analyses for DCPT have been performed and the lack of data accumulation. Therefore, this study tried to verify the validation of numerical modeling for DCPT by comparing and analyzing the results of numerical analyses with field tests. METHODS: The ground elastic modulus and PR(Penetration Rate) value were estimated by using PFC(Particle Flow Code) 3D program based on the discrete element method. Those values were compared and analyzed with the result of field tests. Also, back analysis was conducted to describe ground elastic modulus of field tests. RESULTS : Relative errors of PR value between the numerical analyses and field tests were calculated to be comparatively low. Also, the relationship between elastic modulus and PR value turned out to be similar. CONCLUSIONS : Numerical modeling of DCPT is considered to be suitable for describing field tests by carrying out numerical analysis using PFC 3D program.
        4,000원
        20.
        2012.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This paper evaluates, using LS/DYNA-3D software, the vehicle impact performance of flexible barriers made of steel WBeam supported by four different types of post configurations. These types include circular post, H-shape post, C-shape post, and square post. METHODS : The post-soil interaction has been investigated according to different impact angles. For this purpose, energy absorption, maximum displacements of post and rail, and occupant risk index of THIV have been compared each other. The three dimensional soil material model, instead of the conventional spring model based on Winkler and p-y curve, has been used to increase the correctness of computational model. RESULTS: It is noted the crash energy absorption has been increased with respect to the increase of impact angle. CONCLUSIONS : In particular, a post with open section(H-shape, C-shape) shows the greater crash energy absorption capability as compared with a post with closed section under the same level of impact conditions.
        4,000원
        1 2 3