본 연구에서는 고속철도 열차와 교량구조물의 상호작용에 의한 동적응답을 보다 정밀하게 분석하기 위해 3차원의 주행차량모형을 적용한 20량편성정밀 열차모형과 경부고속철도의 주교량 형식인 2경간 연속 PSC 박스거더교(2@40m)를 대강으로 3차원의 뼈대요소를 사용한 교량모형을 이용하여 철도교의 동적거동 해석 프로그램을 개발하였으며, 열차의 주행시험 결과와의 비교를 통해 개발된 프로그램의 타당성을 검증하였다. 또한 보다 효율적인 열차모형을 제시하기 위해 다양한 편성모형 및 하중모형의 조합에 따른 분석결과에 의하면 가장 무거운 KTX의 동력차를 대상으로 주행차량모형을 적용하고 나머지 차량들은 주행하중모형을 적용한 혼합모형이 효율적인 것으로 판단되었으며, 경부고속철도와 같이 복선구조의 교량인 경우에는 열차의 교행에 의해 증폭될 수 있는 교량의 동적응답 특성에 대한 체계적인 검토가 필요한 것으로 나타났다
본 연구에서는 고속철도에서 차량교량 구조물의 상호작용을 가능한 정밀하게 취급할 수 있는 3차원 해석모형을 개발하였다. 경부고속철도 교량형식인 PSC 박스거더 교량을 40m 단순 와 25-40-25m 3경간 연속 에 대해 뼈대요소를 사용하여 3차원으로 모형 하였으며, 궤도의 불규칙성은 정상확률과정으로 가정하고, 지수 스펙트럼 밀도함수를 사용하여 궤도의 형상을 생성시켰다. 열차는 경부고속철도 차량 하중효과가 가장 큰 동력차 만을 대상으로 17 자유도 모형과 38 자유도 모형으로 분리하여 개발하였다. 다양한 조건에 대한 분석결과를 검토하면 여러 가지 상황에서 38 자유도 모형의 필수 성이 보여지고 있다. 특히 교량의 솟음 및 장기 처짐에 의한 궤도형상변화가 있는 경우에는 반드시 38 자유도 모형이 적용되어야 하는 것으로 분석되었다. 또한 제동하중이 작용할 때 쏠림 효과에 의한 영향이 큰 것으로 평가되어, 제동에 의한 교량의 동적 거동은 종변 위에 대한 자유 도를 고려할 수 있는 주행차량모형으로 해석되어야 함이 규명되었다.
This paper presents a laboratory validation for a Finite Element model updating method using moving vehicle input-deflection output measurements. In conventional FE model updating, a few natural frequencies measured from field experiments have been used to update the FE model based on the assumption that the mass matrix is known accurately. The proposed approach can update the stiffness matrix without the assumption by using static input-output measurements and can even update the mass matrix by using a few natural frequencies obtained from dynamic measurements. Laboratory experiments were carried out for a scaled model of Samseung Bridge located in the test road of Korea Highway Corporation. For a simplicity of experiments, a mass (11kgf) was located in four different locations on the deck and two deflections were measured by laser displacement meters: one at the center girder, and the other in at the outer girder, both in mid-span. Results showed that the proposed methods was capable to estimate Young's Modulus and the mass density of the model bridge accurately while natural-frequency-based updating may result in significant error when higher modes (2nd, 3rd) were used.
Recently, to assessing the deflection of structural member, video gauge was widely used in the field of structural maintenance. This paper is dealt with the laboratory experience on the video gauge for detecting the structural deflection from the digital Image. In this paper, real deflection from LVDT detected from model bridge in laboratory was compared with the measurement of the Video Gauge. The accuracy of the deflection measurement using the Video Gauge in the load of the bridge was verified.
철도차량에 의한 진동은 지반을 통해 주변 지역에 영향을 주고 피로균열등 구조적 손상을 주고 있다. 본 논문은 새롭게 개발된 탄성 스페리컬 받침을 기존 강재스페리컬 받침과의 비교를 통한 진동저감성능에 대해 평가하였다. 탄성스페리컬 받침은 반구형 곡률과 크기를 변경함으로써 현장 여건에 맞는 강성을 구현할 수 있는 장점이 있다. 탄성 스페리컬 받침은 반구형 고무 및 보강판의 적층 받침으로써 성능특성을 확인하기 위해 설계와 해석결과를 비교하고 특성시험을 실시하였다. 또한 진동저감성능 확인을 위해 열차의 실대차 축소모형 시험을실시하였다. 해석적 검증비교를 통한 특성시험에서는 설계하중 500kN 시험체의 압축 및 회전 시험결과 압축보다 회전에 의한 강성 증가가적은 것으로 확인되었다. 또한 압축 및 회전 시험 후 시험체에 외관변형 및 영구적인 손상, 찢어짐 등은 발견되지 않았다. 축소 스케일 진동측정 시험에서는 실대차 모형을 1/50축소하여 교량의 진동을 측정하였다. 그 결과 강재 스페리컬 받침에 비해 탄성 스페리컬 받침의 진동저감능력이 탁월한 것으로 판단되며, 거리별 진동감쇠 성능도 높은 것으로 확인되어 탄성스페리컬 받침의 철도교 적용 시 진동저감효과가우수할 것으로 판단된다. 향 후 실제 철도교량에서의 현장실험을 통해 성능을 검증할 계획이다.
In this study, several vibration characteristics of model bridge due to changes in cable tension are experimentally analyzed. In order to achieve the study, acceleration responses are measured from the model bridge for several cable tension case. The values of features extracted by frequency transform method are increased due to tension-loss.
Causing damage to the actual structure is not easy for new evaluation techniques to validate the damage. Creating a new structure for the validation that is expensive and requires a lot of time. So to verify the techniques using scale model is a common and effective way. For the validation of new techniques, it was to make a scale model of the cable-stayed bridge type and various damages were caused to the bridge model.