검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 251

        1.
        2025.03 구독 인증기관·개인회원 무료
        본 연구는 한국 기상대 데이터를 활용하여 콘크리트 포장의 깊이별 온도를 예측하는 ANN(Artificial Neural Network) 모델을 개발하는 것을 목표로 한다. 기존의 열평형 방정식 기반 모델은 특정 지역의 기상 데이터를 필요로 하기 때문에 일반적인 적용이 어렵다는 한계를 가지고 있다. 이에 본 연구에서는 ANN을 활용하여 기상대 데이터를 기반으로 범용적 인 온도 예측 모델을 개발하고자 한다. 이를 통해 다양한 지역 및 환경 조건에서도 적용 가능한 모델을 구축하는 것이 목적이다. 본 연구에서는 2017년 1월 1일부터 2018년 12월 31일까지의 1시간 단위 기상 및 온도 데이터를 활용하며, 0.05m, 0.15m, 0.25m, 0.35m, 0.45m 깊이별 온도 데이터를 학습 데이터로 사용한다. 입력 변수로는 기온, 풍속, 강수량, 습도, 일 조량, 일사량, 적설량, 적운량, 지면온도를 포함한다. 이러한 다양한 기상 데이터를 활용하여 신경망 모델을 학습하고, 기 존 방식보다 높은 정확도를 확보하는 것이 연구의 핵심 목표이다. 기존 ANN 구조인 O = WI + B에서 확장된 O = W(I + (WI + B)) + B 형태의 비선형 구조를 적용하여 기존 모델이 가지는 비선형 관계 반영의 한계를 극복하고자 한다. 또한, 선형 다중 은닉층 모델과 비선형 다중 은닉층 모델을 각각 개발하여 성능을 비교하고, 비선형 모델의 필요성과 일반화 능력을 평가할 예정이다. 최종적으로 두 모델의 성능을 평균 제곱 오차 및 평균 절대 오차 등과 같은 평가 지표들을 이용하여 비교 분석하고, 가장 적합한 모델을 도출하고자 한다.
        2.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 청소년의 삶의 만족도에 영향을 미치는 주요 요인을 탐색하 기 위해 의사결정나무모형과 로지스틱 회귀분석을 활용하였다. 연구는 경 상북도 내 중학교 5개교에 재학 중인 1,716명의 학생들을 대상으로 수행 되었으며, 부모양육태도, 교사와의 관계, 친구관계, 사회정서역량 등을 주 요 독립변인으로 설정하였다. 분석은 SPSS 28.0과 Stata 16.0을 활용하 여 이루어졌으며, 기술통계, 상관관계분석, 의사결정나무모형, 로지스틱 회 귀분석 등을 수행하였다. 분석 결과, 의사결정나무모형에서는 사회정서역 량 중 자기인식(자기개념)이 삶의 만족도에 가장 중요한 요인으로 확인되 었으며, 부모양육태도 중 따뜻함과 자율지지, 친구관계, 그리고 자기관리 (목표관리)와 (정서조절)도 주요한 영향을 미치는 변수로 나타났다. 로지스 틱 회귀분석에서는 부모양육태도(따뜻함(OR=1.700), 자율지지(OR=1.549)), 교사와의 관계(OR=1.508), 친구관계(OR=1.893), 사회정서역량 중 자기인 식(자기개념)(OR=1.646)과 자기관리(정서조절(OR=1.365), 목표관리(OR=1.279)) 가 삶의 만족도를 유의미하게 예측하였다. 이 연구는 청소년들의 삶의 만 족도를 향상시키기 위해 가정과 학교에서 제공하는 사회적 지지 및 사회 정서역량 개발의 중요성을 강조하며, 이를 위한 교육적·정책적 개입 방안 을 제시한다. 향후 연구에서는 다양한 지역과 연령대를 포함한 종단적 연 구를 통해 보다 일반화된 결과를 도출할 필요가 있다.
        8,100원
        3.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper presents a finite-difference method (FDM)-based heat-transfer model for predicting black-ice formation on asphalt pavements and establishes decision criteria using only meteorological data. Black ice is a major cause of winter road accidents and forms under specific surface temperature and moisture conditions; however, its accurate prediction remains challenging owing to dynamic environmental interactions. The FDM incorporates thermodynamic properties, initial pavement-temperature profiles, and surface heat-transfer mechanisms, i.e., radiation, convection, and conduction. Sensitivity analysis shows the necessity of a 28-d stabilization period for reliable winter predictions. Black-ice prediction logic evaluates the surface conditions, relative humidity, wind speed, and latent-heat accumulation to assess phase changes. Field data from Nonsancheon Bridge were used for validation, where a maximum prediction accuracy of 64% is indicated in specific cases despite the overestimation of surface temperatures compared with sensor measurements. These findings highlight the challenges posed by wet surface conditions and prolonged latent-heat retention, which extend the predicted freezing duration. This study provides a theoretically grounded methodology for predicting black ice on various road structures without necessitating additional measurements. Future studies shall focus on enhancing the model by integrating vehicle-induced heat effects, solar radiation, and improved weather-prediction data while comparing the FDM with machine-learning approaches for performance optimization. The results of this study offer a foundation for developing efficient road-safety measures during winter.
        4,000원
        4.
        2025.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 자기결정성이론과 계획행동이론의 통합모델을 기반으로 미 술관 관람객의 기본심리욕구가 행동의도에 미치는 영향에서 행동구성개 념의 매개효과를 확인하여 행동을 예측하는 모형을 탐색하고자 하였다. 이를 위해 2024년 6월 18일부터 7월 7일까지 설문조사를 실시하여 총 273명의 응답 자료를 구조방정식 모형 분석하였다. 주요 연구결과는 다 음과 같다. 첫째, 모든 변인은 행동의도에 정적 상관을 보였다. 둘째, 기 본심리욕구와 행동의도 간의 관계에서 행동구성개념은 완전 매개효과를 보였다. 셋째, 기본심리욕구는 행동의도에 직접적인 유의미한 영향을 미 치지 못했다. 이러한 결과는 관람객의 재관람의도나 구전의도 등의 패턴 을 이해함으로써 미술관 운영 활성화를 위한 방안을 모색할 수 있다는 점에서 연구의 의의를 둔다.
        6,400원
        5.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        고자리꽃파리는 양파 및 마늘 등 Allium 속에 속하는 농작물의 중요한 해충으로 전 세계적으로 온대 지역에서 경제적 해충으로 취급하고 있다. 본 연구는 고자리꽃파리의 발생 기준점을 정하여 연간발생양상을 해석하고, 초기방제 시기를 설정할 수 있도록 월동 번데기 우화모형을 개발하고자 수행하였다. 고자리꽃파리 월동 번데기의 온도발육 모형으로 선형 및 비선형 모형을 추정하고, 발육기간 분포모형과 결합하여 월동번데기의 성충으로 우화시기 예측모형을 수립하였다. 비선형 모델의 경우 3-매개변수 Lactin 수식과 저온에서 온도와 발육률 간의 선형성을 높이기 위해 마지막 매개변수 (λ)를 선형모형의 절편으로 대체한 4-매개변수 수식을 사용하였다. 일일 평균기온을 이용하여 50% 성충 우화일을 예측한 결과, 선형모형 기반의 적 산온도 모형(DD, degree-day) 및 선형 또는 비선형 모형을 적용하여 발육률을 누적하는 발육률 적산 모형(RS, rate summation) 모두 실측값과 큰 차이를 보였다. 반면 시간별 온도를 입력변수를 사용한 경우, 3-매개변수 모델을 제외한 사인곡선법 기반의 DD 모형, 선형 RS 모형, 4-매개변수 비선 형 RS 모형의 평균편차는, 실제 관측치와 3일 이상 차이가 나지 않았다. 최종적으로 시간별 온도자료를 이용하고, 발육모형으로 선형과 4-매개변수 비 선형 모형을 적용하는 RS 모형을 활용 가능한 모형으로 선정하였다. 선형 RS 모형은 두 번의 포장적합(1984, 1987)에서 실제 관측값과 편차가 3일 이내로 차이가 없었다. 비선형 RS 모형은 1984년 적합에서 0.8일의 편차로 정확했지만 1987년 적합에서는 6.5일의 평균편차를 보였다.
        4,300원
        6.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to develop a pavement management system suitable for the climate and traffic characteristics of Gangwon Province. This research focused on analyzing the asphalt pavement performance characteristics of national highways in Gangwon Province by region and developing prediction models for the current pavement performance and annual changes in performance. Quantitative indicators were collected to evaluate the condition of national highway pavements in Gangwon Province, including factors affecting road performance, such as weather data and traffic volume. The Gangwon region was then classified according to its topography, climate, weather, traffic volume, and pavement performance. Prediction models for the current pavement performance and annual changes in performance were developed for national highways. This study also compared the predicted values for the Gangwon region using a nationwide pavement performance-prediction model from other studies with the predicted values from the developed annual changes in the performance prediction model. This study established a foundation for implementing a pavement management system tailored to the unique climate and traffic characteristics of Gangwon Province. By developing region-specific performance prediction models, this study provided valuable insights into more effective and efficient pavement maintenance strategies in Gangwon Province.
        4,500원
        7.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to improve the accuracy of road pavement design by comparing and analyzing various statistical and machine-learning techniques for predicting asphalt layer thickness, focusing on regional roads in Pakistan. The explanatory variables selected for this study included the annual average daily traffic (AADT), subbase thickness, and subgrade California bearing ratio (CBR) values from six cities in Pakistan. The statistical prediction models used were multiple linear regression (MLR), support vector regression (SVR), random forest, and XGBoost. The performance of each model was evaluated using the mean absolute percentage error (MAPE) and root-mean-square error (RMSE). The analysis results indicated that the AADT was the most influential variable affecting the asphalt layer thickness. Among the models, the MLR demonstrated the best predictive performance. While XGBoost had a relatively strong performance among the machine-learning techniques, the traditional statistical model, MLR, still outperformed it in certain regions. This study emphasized the need for customized pavement designs that reflect the traffic and environmental conditions specific to regional roads in Pakistan. This finding suggests that future research should incorporate additional variables and data for a more in-depth analysis.
        4,000원
        8.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to enhance the correlation between the dependent and independent variables in a prediction model of pavement performance for local roads on Jeju Island by applying K-means clustering for data preprocessing, thereby improving the accuracy of the prediction model. Pavement management system (PMS) data from Jeju Island were utilized. K-means clustering was applied, with the optimal K value determined using the elbow method and silhouette score. The Haversine formula was used to calculate the distances between the analysis sections and weather stations, and Delaunay triangulation and inverse distance weighting (IDW) were employed to interpolate the magnitude of the influencing factors. The preprocessed data were then analyzed for correlations between the rutting depth (RD) and influencing factors, and a prediction model was developed through multiple linear regression analysis. The RD prediction model demonstrated the highest performance with an R² of 0.32 and root-mean-square error (RMSE) of 1.48. This indicates that preprocessing based on the RD is more effective for developing an RD prediction model. The study also observed that the lack of pavement-age data in the analysis was a limiting factor for the prediction accuracy. The application of K-means clustering for data preprocessing effectively improved the correlation between the dependent and independent variables, particularly in the RD prediction model. Future research is expected to further enhance the prediction accuracy by including pavement-age data.
        4,000원
        9.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 MaxEnt(Maximum Entropy Moedl) 모형을 이용하여 서울 도심 지역에서 너구리(Nyctereutes procyonoides) 출현 지역을 예측하고, 너구리 출몰에 영향을 미치는 환경 요인을 분석하였다. 분석은 2018년부터 2022년까지 수집된 서울시 야생동물센터의 구조 기록을 사용하였다. 토지 피복, 도로 면적, 경사도, 먹이원까지의 거리, 인구 밀도, NDVI(Normalized Difference Vegetation Index), 수역까지의 거리, 초지 면적을 환경 변수로 채택하여 가장 예측력이 높은 모델을 도출하였다. 분석 결과, 너구리 출몰 가능성이 높은 지역은 초지와 나지였고, 도로 밀도가 낮은 지역(<20%)에서 출몰할 가능성이 더 높았다. 또한 너구리는 경사가 완만하고(1.7˚), 먹이원에 가까우며(26.78m), 인구 밀도가 낮은(21.70명 /ha) 지역에서 발생할 가능성이 더 높았다. 다른 요인으로는 낮은 식생 밀도(NDVI 0.17), 하천과의 근접성(32.26m), 넓은 초지 지역(31.14%)에서 너구리가 출몰할 가능성이 높은 것으로 예측되었다. 서울 전역 중 약 65.42㎢(10.96%)가 잠재적인 너구리 발생 지역으로 확인되었으며, 주요 지역은 하천 주변, 산림 경계부, 도시공원 및 인근 초지와 농경지 주변이었다. 이 중 28개 지역(송파구 6개, 강서구 5개, 강남구 4개, 강동구 3개, 서초구 3개, 광진구, 노원구, 동대문구, 동작구, 마포구, 은평구, 중랑구 각각 1개 지역)이 너구리 발생 확률이 가장 높은 곳으로 확인되었다. 본 연구의 결과는 시민과 너구리의 공존 방안을 마련하는 데 중요한 기초 자료를 제공하며, 이를 통한 도시생태 전략 수립의 근거로 활용할 수 있을 것이다.
        4,500원
        10.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to develop a comprehensive predictive model for Digital Quality Management (DQM) and to analyze the impact of various quality activities on different levels of DQM. By employing the Classification And Regression Tree (CART) methodology, we are able to present predictive scenarios that elucidate how varying quantitative levels of quality activities influence the five major categories of DQM. The findings reveal that the operation level of quality circles and the promotion level of suggestion systems are pivotal in enhancing DQM levels. Furthermore, the study emphasizes that an effective reward system is crucial to maximizing the effectiveness of these quality activities. Through a quantitative approach, this study demonstrates that for ventures and small-medium enterprises, expanding suggestion systems and implementing robust reward mechanisms can significantly improve DQM levels, particularly when the operation of quality circles is challenging. The research provides valuable insights, indicating that even in the absence of fully operational quality circles, other mechanisms can still drive substantial improvements in DQM. These results are particularly relevant in the context of digital transformation, offering practical guidelines for enterprises to establish and refine their quality management strategies. By focusing on suggestion systems and rewards, businesses can effectively navigate the complexities of digital transformation and achieve higher levels of quality management.
        5,100원
        11.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 다목적 구조물인 다중연결 해양부유체를 대상으로 변형 기반 모드 차수축소법을 적용하고 차수축소모델의 구조응 답 예측 성능을 향상시키기 위해 유전 알고리즘 기반의 센서 배치 최적화를 수행하였다. 다중연결 해양부유체의 차수축소모델 생성 에 필요한 변형 기반 모드 데이터를 얻기 위해 다양한 규칙파랑하중조건에 대한 유체-구조 연성 수치해석을 수행하고 변형 기반 모드 의 직교성, 자기상관계수를 이용하여 주요 변형 기반 모드를 선정하였다. 다중연결 해양부유체의 경우 차수축소모델의 구조응답 예 측 성능이 계측 및 예측 구조응답 위치에 따라 민감하기 때문에 유전 알고리즘 기반의 최적화를 수행하여 최적의 센서 배치를 도출하 였다. 최적화 결과, 모든 센서 배치 조합에 대한 차수축소모델 생성 및 예측 성능 평가 대비 약 8배의 계산 비용을 절감하였으며, 예측 성능 평가 지표인 평균 제곱근 오차가 초기 센서 배치보다 84% 감소하였다. 또한, 다중연결 해양부유체 모형시험 결과를 이용하여 불 규칙파랑하중에 대한 최적화된 센서 배치의 차수축소모델의 구조응답 예측 성능을 평가 및 검증하였다.
        4,000원
        13.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Approximately 40,000 elevators are installed every year in Korea, and they are used as a convenient means of transportation in daily life. However, the continuous increase in elevators has a social problem of increased safety accidents behind the functional aspect of convenience. There is an emerging need to induce preemptive and active elevator safety management by elevator management entities by strengthening the management of poorly managed elevators. Therefore, this study examines domestic research cases related to the evaluation items of the elevator safety quality rating system conducted in previous studies, and develops a statistical model that can examine the effect of elevator maintenance quality as a result of the safety management of the elevator management entity. We review two types: odds ratio analysis and logistic regression analysis models.
        4,000원
        15.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to develop a model for predicting the growth of kimchi cabbage using image data and environmental data. Kimchi cabbages of the ‘Cheongmyeong Gaual’ variety were planted three times on July 11th, July 19th, and July 27th at a test field located at Pyeongchang-gun, Gangwon-do (37°37′ N 128°32′ E, 510 elevation), and data on growth, images, and environmental conditions were collected until September 12th. To select key factors for the kimchi cabbage growth prediction model, a correlation analysis was conducted using the collected growth data and meteorological data. The correlation coefficient between fresh weight and growth degree days (GDD) and between fresh weight and integrated solar radiation showed a high correlation coefficient of 0.88. Additionally, fresh weight had significant correlations with height and leaf area of kimchi cabbages, with correlation coefficients of 0.78 and 0.79, respectively. Canopy coverage was selected from the image data and GDD was selected from the environmental data based on references from previous researches. A prediction model for kimchi cabbage of biomass, leaf count, and leaf area was developed by combining GDD, canopy coverage and growth data. Single-factor models, including quadratic, sigmoid, and logistic models, were created and the sigmoid prediction model showed the best explanatory power according to the evaluation results. Developing a multi-factor growth prediction model by combining GDD and canopy coverage resulted in improved determination coefficients of 0.9, 0.95, and 0.89 for biomass, leaf count, and leaf area, respectively, compared to single-factor prediction models. To validate the developed model, validation was conducted and the determination coefficient between measured and predicted fresh weight was 0.91, with an RMSE of 134.2 g, indicating high prediction accuracy. In the past, kimchi cabbage growth prediction was often based on meteorological or image data, which resulted in low predictive accuracy due to the inability to reflect on-site conditions or the heading up of kimchi cabbage. Combining these two prediction methods is expected to enhance the accuracy of crop yield predictions by compensating for the weaknesses of each observation method.
        4,200원
        17.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적 : 본 연구의 목적은 Coronavirys Disease(COVID-19) 팬데믹을 거친 고령자의 사회적 건강의 수준의 변화궤적에 대한 잠재계층을 분류하고 잠재 계층별 특성을 분석함에 있다. 또한 이러한 사회적 건강에 영향을 미치는 예측요인을 파악하여 고령자의 사회적 건강을 증진을 위한 기초자료를 마련하고자 한다. 연구방법 : 국내 고령자의 사회적 친밀도에 따른 사회적 건강 유형을 파악하기 위해서 한국복지패널의 3 년차 종단자료를 토대로 분석하였으며, 연구대상자는 세 시점 모두를 응답한 2845명의 고령자를 대상으 로 하였다. 대상자중심접근인 성장혼합모형(Growth Mixture Model; GMM)을 적용하여 변화궤적에 따 른 잠재계층을 분석 하였고, 도출된 각 잠재유형별 특성을 파악하기 위해 χ2 분석, 분산분석을 실시하 였으며, 계층 간 차이를 유발하는 요인을 파악하기 위해 다항로지스틱 회귀분석을 실시하였다. 결과 : GMM 적용결과, 사회적 건강의 변화궤적에 대한 잠재계층은 최종 4개의 집단으로 저수준 감소-증 가 집단, 중수준 유지-증가 집단, 고수준-감소 집단, 고수준 유지’집단으로 분류되었다. 또한 사회적 건강 수준에 따라 여가만족도에서 차이가 나타나는 것으로 드러났으며, 그 외에도 연령 차이가 존재하였 다. 잠재계층분류에 영향을 미치는 영향변인을 검증한 결과, 특히 여성일수록, 종교를 가지고 있을수록, 여가만족도와 전반적 만족도가 모두 높을수록 고수준 유지 집단에 속할 확률이 높은 것으로 나타났다. 결론 : 국내 고령자의 사회적 건강은 시간이 지남에 따라 감소하는 궤적을 보이는 것으로 나타났다. 변화 궤적에 따라 4개의 집단으로 구분 지을 수 있으며, 각 잠재 유형별 연령과 여가 만족도 부분에서 집단별 차이가 드러났다.
        4,900원
        18.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 대파의 가락시장 도매가격을 이용하여 기존 시계열 모형인 ARIMA 모형, 홀트-윈터스 평활법과 대표적인 기계학습 방법인 랜덤 포레스트(Random forest) 분석 기법의 가격 예측력을 비교하였다. 세 모형의 예측력을 분석한 결과는 다음과 같다. 가장 예측력이 높게 나타난 모형은 3년(36개월)을 주기로 설정한 ARIMA 모형이었다. 또한 ARIMA 모형과 홀트-윈터스 평활법은 일별 데이터보다 월별 데이터를 이용한 예측 결과의 정확도가 더 높아 훈련 데이터에 대한 과적합(overfitting)이 오히려 예측력을 낮추는 현상을 보였다. 반면, 랜덤 포레스트는 월별 데이터 보다 일별 데이터를 사용한 모형의 예측력이 더 높았다. 이는 학습량이 많을수록 높은 예측력을 보여주는 기계학습의 특징을 보여주었다. 그러나 기계학습 방법을 활용한 가격 예측에는 가격에 영향을 주는 설명변수를 찾고, 양질의 훈련 데이터 축적이 필요하다는 것을 알 수 있었다. 향후 연구에서는 다양한 설명변수와 기계학습 및 딥러닝 기법을 적용한다면 농축산물 가격 예측력을 높이는데 도움이 될 것으로 판단된다.
        4,000원
        19.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 서울교육청 교육연구정보원의 「서울교육종단연구(SELS)」에 서 수집된 자료를 활용하여, 고등학생 3학년인 9차(2018년) 자료에서 학 생 2,793명을 연구 대상자로 정하였다. 청소년의 학교만족도와 관련한 예측요인을 확인하기 위해 SPSS 26.0을 사용하여 의사결정나무모형 분 석을 실시하였다. 연구결과를 살펴보면, 첫째, 청소년의 학교만족도의 분 류에서 개인적인 요인으로는 성별, 자아개념, 자기평가, 사회적 관계 요 인으로 보호자, 학교교사, 학교 특성/문화 요인으로는 학교에 대한 평가, 학교풍토가 유의한 변인으로 확인되었다. 둘째, 학교만족도 분류에 영향 을 주는 변인들 중에서는 학교에 대한 평가가 가장 영향력을 가진 변인 으로 나타났다. 셋째, 학교교사 수치가 높은 집단에서는 학교풍토, 자아 개념이 분류의 중요한 의미 있는 변인이었고, 학교교사 수치가 낮은 집 단에서는 자기평가, 학교풍토, 학교에 대한 평가가 영향력 있는 변인이었 다. 넷째, 학교에 대한 평가 수준 및 학교풍토가 바람직하고 좋으면 학교 만족도가 긍정적으로 상승하는 것으로 확인되었다. 본 연구결과는 청소 년의 학교만족도 증진을 위한 방안 모색, 교육정책 수립 및 프로그램 운 영에 도움이 될 것으로 사료된다.
        6,900원
        1 2 3 4 5