This study aims to develop a comprehensive predictive model for Digital Quality Management (DQM) and to analyze the impact of various quality activities on different levels of DQM. By employing the Classification And Regression Tree (CART) methodology, we are able to present predictive scenarios that elucidate how varying quantitative levels of quality activities influence the five major categories of DQM. The findings reveal that the operation level of quality circles and the promotion level of suggestion systems are pivotal in enhancing DQM levels. Furthermore, the study emphasizes that an effective reward system is crucial to maximizing the effectiveness of these quality activities. Through a quantitative approach, this study demonstrates that for ventures and small-medium enterprises, expanding suggestion systems and implementing robust reward mechanisms can significantly improve DQM levels, particularly when the operation of quality circles is challenging. The research provides valuable insights, indicating that even in the absence of fully operational quality circles, other mechanisms can still drive substantial improvements in DQM. These results are particularly relevant in the context of digital transformation, offering practical guidelines for enterprises to establish and refine their quality management strategies. By focusing on suggestion systems and rewards, businesses can effectively navigate the complexities of digital transformation and achieve higher levels of quality management.
본 논문에서는 다목적 구조물인 다중연결 해양부유체를 대상으로 변형 기반 모드 차수축소법을 적용하고 차수축소모델의 구조응 답 예측 성능을 향상시키기 위해 유전 알고리즘 기반의 센서 배치 최적화를 수행하였다. 다중연결 해양부유체의 차수축소모델 생성 에 필요한 변형 기반 모드 데이터를 얻기 위해 다양한 규칙파랑하중조건에 대한 유체-구조 연성 수치해석을 수행하고 변형 기반 모드 의 직교성, 자기상관계수를 이용하여 주요 변형 기반 모드를 선정하였다. 다중연결 해양부유체의 경우 차수축소모델의 구조응답 예 측 성능이 계측 및 예측 구조응답 위치에 따라 민감하기 때문에 유전 알고리즘 기반의 최적화를 수행하여 최적의 센서 배치를 도출하 였다. 최적화 결과, 모든 센서 배치 조합에 대한 차수축소모델 생성 및 예측 성능 평가 대비 약 8배의 계산 비용을 절감하였으며, 예측 성능 평가 지표인 평균 제곱근 오차가 초기 센서 배치보다 84% 감소하였다. 또한, 다중연결 해양부유체 모형시험 결과를 이용하여 불 규칙파랑하중에 대한 최적화된 센서 배치의 차수축소모델의 구조응답 예측 성능을 평가 및 검증하였다.
Approximately 40,000 elevators are installed every year in Korea, and they are used as a convenient means of transportation in daily life. However, the continuous increase in elevators has a social problem of increased safety accidents behind the functional aspect of convenience. There is an emerging need to induce preemptive and active elevator safety management by elevator management entities by strengthening the management of poorly managed elevators. Therefore, this study examines domestic research cases related to the evaluation items of the elevator safety quality rating system conducted in previous studies, and develops a statistical model that can examine the effect of elevator maintenance quality as a result of the safety management of the elevator management entity. We review two types: odds ratio analysis and logistic regression analysis models.
This study was conducted to develop a model for predicting the growth of kimchi cabbage using image data and environmental data. Kimchi cabbages of the ‘Cheongmyeong Gaual’ variety were planted three times on July 11th, July 19th, and July 27th at a test field located at Pyeongchang-gun, Gangwon-do (37°37′ N 128°32′ E, 510 elevation), and data on growth, images, and environmental conditions were collected until September 12th. To select key factors for the kimchi cabbage growth prediction model, a correlation analysis was conducted using the collected growth data and meteorological data. The correlation coefficient between fresh weight and growth degree days (GDD) and between fresh weight and integrated solar radiation showed a high correlation coefficient of 0.88. Additionally, fresh weight had significant correlations with height and leaf area of kimchi cabbages, with correlation coefficients of 0.78 and 0.79, respectively. Canopy coverage was selected from the image data and GDD was selected from the environmental data based on references from previous researches. A prediction model for kimchi cabbage of biomass, leaf count, and leaf area was developed by combining GDD, canopy coverage and growth data. Single-factor models, including quadratic, sigmoid, and logistic models, were created and the sigmoid prediction model showed the best explanatory power according to the evaluation results. Developing a multi-factor growth prediction model by combining GDD and canopy coverage resulted in improved determination coefficients of 0.9, 0.95, and 0.89 for biomass, leaf count, and leaf area, respectively, compared to single-factor prediction models. To validate the developed model, validation was conducted and the determination coefficient between measured and predicted fresh weight was 0.91, with an RMSE of 134.2 g, indicating high prediction accuracy. In the past, kimchi cabbage growth prediction was often based on meteorological or image data, which resulted in low predictive accuracy due to the inability to reflect on-site conditions or the heading up of kimchi cabbage. Combining these two prediction methods is expected to enhance the accuracy of crop yield predictions by compensating for the weaknesses of each observation method.
목적 : 본 연구의 목적은 Coronavirys Disease(COVID-19) 팬데믹을 거친 고령자의 사회적 건강의 수준의 변화궤적에 대한 잠재계층을 분류하고 잠재 계층별 특성을 분석함에 있다. 또한 이러한 사회적 건강에 영향을 미치는 예측요인을 파악하여 고령자의 사회적 건강을 증진을 위한 기초자료를 마련하고자 한다. 연구방법 : 국내 고령자의 사회적 친밀도에 따른 사회적 건강 유형을 파악하기 위해서 한국복지패널의 3 년차 종단자료를 토대로 분석하였으며, 연구대상자는 세 시점 모두를 응답한 2845명의 고령자를 대상으 로 하였다. 대상자중심접근인 성장혼합모형(Growth Mixture Model; GMM)을 적용하여 변화궤적에 따 른 잠재계층을 분석 하였고, 도출된 각 잠재유형별 특성을 파악하기 위해 χ2 분석, 분산분석을 실시하 였으며, 계층 간 차이를 유발하는 요인을 파악하기 위해 다항로지스틱 회귀분석을 실시하였다. 결과 : GMM 적용결과, 사회적 건강의 변화궤적에 대한 잠재계층은 최종 4개의 집단으로 저수준 감소-증 가 집단, 중수준 유지-증가 집단, 고수준-감소 집단, 고수준 유지’집단으로 분류되었다. 또한 사회적 건강 수준에 따라 여가만족도에서 차이가 나타나는 것으로 드러났으며, 그 외에도 연령 차이가 존재하였 다. 잠재계층분류에 영향을 미치는 영향변인을 검증한 결과, 특히 여성일수록, 종교를 가지고 있을수록, 여가만족도와 전반적 만족도가 모두 높을수록 고수준 유지 집단에 속할 확률이 높은 것으로 나타났다. 결론 : 국내 고령자의 사회적 건강은 시간이 지남에 따라 감소하는 궤적을 보이는 것으로 나타났다. 변화 궤적에 따라 4개의 집단으로 구분 지을 수 있으며, 각 잠재 유형별 연령과 여가 만족도 부분에서 집단별 차이가 드러났다.
본 연구에서는 대파의 가락시장 도매가격을 이용하여 기존 시계열 모형인 ARIMA 모형, 홀트-윈터스 평활법과 대표적인 기계학습 방법인 랜덤 포레스트(Random forest) 분석 기법의 가격 예측력을 비교하였다. 세 모형의 예측력을 분석한 결과는 다음과 같다. 가장 예측력이 높게 나타난 모형은 3년(36개월)을 주기로 설정한 ARIMA 모형이었다. 또한 ARIMA 모형과 홀트-윈터스 평활법은 일별 데이터보다 월별 데이터를 이용한 예측 결과의 정확도가 더 높아 훈련 데이터에 대한 과적합(overfitting)이 오히려 예측력을 낮추는 현상을 보였다. 반면, 랜덤 포레스트는 월별 데이터 보다 일별 데이터를 사용한 모형의 예측력이 더 높았다. 이는 학습량이 많을수록 높은 예측력을 보여주는 기계학습의 특징을 보여주었다. 그러나 기계학습 방법을 활용한 가격 예측에는 가격에 영향을 주는 설명변수를 찾고, 양질의 훈련 데이터 축적이 필요하다는 것을 알 수 있었다. 향후 연구에서는 다양한 설명변수와 기계학습 및 딥러닝 기법을 적용한다면 농축산물 가격 예측력을 높이는데 도움이 될 것으로 판단된다.
본 연구는 서울교육청 교육연구정보원의 「서울교육종단연구(SELS)」에 서 수집된 자료를 활용하여, 고등학생 3학년인 9차(2018년) 자료에서 학 생 2,793명을 연구 대상자로 정하였다. 청소년의 학교만족도와 관련한 예측요인을 확인하기 위해 SPSS 26.0을 사용하여 의사결정나무모형 분 석을 실시하였다. 연구결과를 살펴보면, 첫째, 청소년의 학교만족도의 분 류에서 개인적인 요인으로는 성별, 자아개념, 자기평가, 사회적 관계 요 인으로 보호자, 학교교사, 학교 특성/문화 요인으로는 학교에 대한 평가, 학교풍토가 유의한 변인으로 확인되었다. 둘째, 학교만족도 분류에 영향 을 주는 변인들 중에서는 학교에 대한 평가가 가장 영향력을 가진 변인 으로 나타났다. 셋째, 학교교사 수치가 높은 집단에서는 학교풍토, 자아 개념이 분류의 중요한 의미 있는 변인이었고, 학교교사 수치가 낮은 집 단에서는 자기평가, 학교풍토, 학교에 대한 평가가 영향력 있는 변인이었 다. 넷째, 학교에 대한 평가 수준 및 학교풍토가 바람직하고 좋으면 학교 만족도가 긍정적으로 상승하는 것으로 확인되었다. 본 연구결과는 청소 년의 학교만족도 증진을 위한 방안 모색, 교육정책 수립 및 프로그램 운 영에 도움이 될 것으로 사료된다.
PURPOSES : The primary purpose of this study is to develop a framework for predicting the demand and distribution of pedestrians when an open space zone is built at the top through the undergroundization of the Gyeongin Expressway.
METHODS : After analyzing the current status through a survey on the number of people, students, surrounding traffic volume, and future socioeconomic indicators, the rate of change in the floating population and the rate of increase and decrease in the traffic volume of pedestrians were calculated to evaluate the effect. In addition, microscopic analysis results were derived by setting a pedestrian analysis zone (PAZ). A walking environment index (WEI) was developed that can quantitatively evaluate the degree of walking activation by indicating walking-related surrounding environmental factors. Based on this, a walking demand prediction model was developed. In addition, the results were validated by calculating the walking volume through a micro-simulation in/around the open space zone.
RESULTS : The number of crosswalks and schools, transit development indicators, and pedestrian volume increased as the WEI value increased. However, the log form of the distance was observed to be a factor that reduced walking.
CONCLUSIONS : This study attempted to reliably predict the demand for walking on the Gyeongin Expressway by calculating the amount of induced walking and the amount of passing walking. The pedestrian demand can be boosted by improving walking environments.
The management of algal bloom is essential for the proper management of water supply systems and to maintain the safety of drinking water. Chlorophyll-a(Chl-a) is a commonly used indicator to represent the algal concentration. In recent years, advanced machine learning models have been increasingly used to predict Chl-a in freshwater systems. Machine learning models show good performance in various fields, while the process of model development requires considerable labor and time by experts. Automated machine learning(auto ML) is an emerging field of machine learning study. Auto ML is used to develop machine learning models while minimizing the time and labor required in the model development process. This study developed an auto ML to predict Chl-a using auto sklearn, one of most widely used open source auto ML algorithms. The model performance was compared with other two popular ensemble machine learning models, random forest(RF) and XGBoost(XGB). The model performance was evaluated using three indices, root mean squared error, root mean squared error-observation standard deviation ratio(RSR) and Nash-Sutcliffe coefficient of efficiency. The RSR of auto ML, RF, and XGB were 0.659, 0.684 and 0.638, respectively. The results shows that auto ML outperforms RF, and XGB shows better prediction performance than auto ML, while the differences between model performances were not significant. Shapley value analysis, an explainable machine learning algorithm, was used to provide quantitative interpretation about the model prediction of auto ML developed in this study. The results of this study present the possible applicability of auto ML for the prediction of water quality.
PURPOSES : In this study, surface distress (SD), rutting depth (RD), and international roughness index (IRI) prediction models are developed based on the zones of Incheon and road classes using regression analysis. Regression analysis is conducted based on a correlation analysis between the pavement performance and influencing factors.
METHODS : First, Incheon was categorized by zone such as industrial, port, and residential areas, and the roads were categorized into major and sub-major roads. A weather station triangle network for Incheon was developed using the Delaunay triangulation based on the position of the weather station to match the road sections in Incheon and environmental factors. The influencing factors of the road sections were matched Based on the developed triangular network. Meanwhile, based on the matched influencing factors, a model of the current performance of the road pavement in Incheon was developed by performing multiple regression analysis. Sensitivity analysis was conducted using the developed model to determine the influencing factor that affected each performance factor the most significantly.
RESULTS : For the SD model, frost days, daily temperature range, rainy days, tropical nights, and minimum temperatures are used as independent variables. Meanwhile, the truck ratio, freeze–thaw days, precipitation days, annual temperature range, and average temperatures are used for the RD model. For the IRI model, the maximum temperature, freeze–thaw days, average temperature, annual precipitation, and wet days are used. Results from the sensitivity analysis show that frost days for the SD model, precipitation days and freeze–thaw days for the RD model, and wet days for the IRI model impose the most significant effects.
CONCLUSIONS : We developed a road pavement performance prediction model using multiple regression analysis based on zones in Incheon and road classes. The developed model allows the influencing factors and circumstances to be predicted, thus facilitating road management.
PURPOSES : To efficiently manage pavements, a systematic pavement management system must be established based on regional characteristics. Suppose that the future conditions of a pavement section can be predicted based on data obtained at present. In this case, a more reasonable road maintenance strategy should be established. Hence, a prediction model of the annual surface distress (SD) change for national highway pavements in Gangwon-do, Korea is developed based on influencing factors.
METHODS : To develop the model, pavement performance data and influencing factors were obtained. Exploratory data analysis was performed to analyze the data acquired, and the results show that the data were preprocessed. The variables used for model development were selected via correlation analysis, where variables such as surface distress, international roughness index, daily temperature range, and heat wave days were used. Best subset regression was performed, where the candidate model was selected from all possible subsets based on certain criteria. The final model was selected based on an algorithm developed for rational model selection. The sensitivity of the annual SD change was analyzed based on the variables of the final model.
RESULTS : The result of the sensitivity analysis shows that the annual SD change is affected by the variables in the following order: surface distress ˃ heat wave days ˃ daily temperature range ˃ international roughness index.
CONCLUSIONS : An annual SD change prediction model is developed by considering the present performance, traffic volume, and climatic conditions. The model can facilitate the establishment of a reasonable road maintenance strategy. The prediction accuracy can be improved by obtaining additional data, such as the construction quality, material properties, and pavement thickness.
해상공사에서 발생하는 부유사는 해수의 탁도를 증가시키고 광량을 감소시켜 해양생물에 악영향을 미치므로 해양환경영향평 가에서 중요한 요소이다. 하지만 평가에 적용되는 인자에 대한 공식적인 자료의 부족과 평가자의 능력에 따라 그 영향이 달리 평가되고 있다. 따라서 본 연구에서는 해역이용영향평가센터에서 검토한 3년간(2012–2014)의 매립, 준설, 외곽시설물 설치 등 총 58건 사업에 대한 부유사 확산 평가에 대한 실태를 진단하고 개선방안을 제시하였다. 개선방안 제시를 위해 4가지의 평가지표(격자체계의 적정성, 원단위의 적정성, 대표입경 및 침강속도의 적정성)를 적용하였다. 각 항목별 신뢰도에 평균점수 분석결과, 격자체계는 25점, 원단위는 60점, 대표입 경은 34점 그리고 침강속도는 17점으로 평가항목에 대한 개선방안이 필요한 것으로 나타났다. 본 연구에서는 부유사 확산 평가상태에 대 한 진단 및 신뢰도 평가 결과를 활용하여 부유사 확산예측에 대한 개선방안을 제안하였다. 먼저, 부유사 발생원단위 및 대표입경별 침강 속도에 대한 공신력 있는 값이 가이드라인을 통해 제공해야 한다. 그리고 실무에선 신뢰성 향상을 위해 격자체계의 적정성과 결과의 검 증을 철저히 해야 한다.